
Page of 1 58 Paladin Blockchain Security

Smart Contract
Security Assessment

paladinsec.co info@paladinsec.co

Final Report

For Cian (Polygon)
03 January 2023

Table of Contents 
 
Table of Contents	
2

Disclaimer	
6

1 Overview	
7

1.1 Summary	
7

1.2 Contracts Assessed	
8

1.3 Findings Summary	
9

1.3.1 Global Issues	
10

1.3.2 AdapterBase	
10

1.3.3 OneInchAdapter	
10

1.3.4 AaveV3Adapter	
10

1.3.5 BalancerV2Adapter	
11

1.3.6 FeeBoxMatic	
11

1.3.7 VerifierBasic	
11

1.3.8 QuickSwapAdapter	
11

1.3.9 StaderAdapter	
11

1.3.10 WmaticGateway	
12

1.3.11 AdapterManager	
12

1.3.12 AccountManager	
12

1.3.13 Automation	
12

1.3.14 AutomationCallable	
12

1.3.15 ControllerLib	
13

1.3.16 ControllerLibSub	
13

1.3.17 ControllerLink	
13

1.3.18 BalancerERC3156 (V2)	
13

1.3.19 ERC2612Verifier	
13

1.3.20 TokenApprovalVerifier	
14

1.3.21 StaderAirdrop	
14

Page of 2 58 Paladin Blockchain Security

1.3.22 Timelock	
14

1.3.23 TimelockCallable	
14

2 Findings	
15

2.1 Global Issues	
15

2.1.1 Issues & Recommendations	
16

2.2 Adapters/AdapterBase	
17

2.2.1 Privileged Functions	
17

2.2.2 Issues & Recommendations	
18

2.3 Adapters/OneInchAdapter	
19

2.3.1 Issues & Recommendations	
19

2.4 Adapters/AaveV3Adapter	
20

2.4.1 Privileged Functions	
20

2.4.2 Issues & Recommendations	
21

2.5 Adapters/BalancerV2Adapter	
24

2.5.1 Issues & Recommendations	
25

2.6 Adapters/FeeBoxMATIC	
27

2.6.1 Privileged Functions	
27

2.6.2 Issues & Recommendations	
27

2.7 Adapters/VerifierBasic	
28

2.7.1 Issues & Recommendations	
28

2.8 Adapters/QuickSwapAdapter	
29

2.8.1 Issues & Recommendations	
30

2.9 Adapters/StaderAdapter	
31

2.9.1 Issues & Recommendations	
32

2.10 Adapters/WmaticGateway	
34

2.10.1 Issues & Recommendations	
34

2.11 Adapters/AdapterManager	
35

2.11.1 Privileged Functions	
35

2.11.2 Issues & Recommendations	
35

2.12 Core/AccountManager	
36

Page of 3 58 Paladin Blockchain Security

2.12.1 Privileged Functions	
37

2.12.2 Issues & Recommendations	
38

2.13 Core/Automation	
39

2.13.1 Privileged Functions	
39

2.13.2 Issues & Recommendations	
40

2.14 Core/AutomationCallable	
41

2.14.1 Issues & Recommendations	
41

2.15 Core/ControllerLib	
42

2.15.1 Privileged Functions	
42

2.15.2 Issues & Recommendations	
43

2.16 Core/ControllerLibSub	
45

2.16.1 Privileged Functions	
45

2.16.2 Issues & Recommendations	
45

2.17 Core/ControllerLink	
46

2.17.1 Privileged Functions	
46

2.17.1 Privileged Functions	
46

2.18 Core/BalancerERC3156 (V2)	
47

2.18.1 Issues & Recommendations	
48

2.19 Core/ERC2612Verifier	
50

2.19.1 Privileged Functions	
50

2.19.1 Issues & Recommendations	
50

2.20 Core/TokenApprovalVerifier	
51

2.20.1 Privileged Functions	
51

2.20.2 Issues & Recommendations	
51

2.21 Core/StaderAirdrop	
52

2.21.1 Privileged Functions	
52

2.21.2 Issues & Recommendations	
53

2.22 Timelock	
54

2.22.1 Privileged Functions	
55

2.22.2 Issues & Recommendations	
56

Page of 4 58 Paladin Blockchain Security

2.23 TimelockCallable	
57

2.23.1 Privileged Functions	
57

2.23.2 Issues & Recommendations	 57

Page of 5 58 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 6 58 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Cian’s contracts on the Polygon network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

This audit is an extension from the Ethereum audit. All acknowledged issues remain
valid in this audit.

1.1	 	 Summary

Project Name Cian

URL https://cian.app/

Network Polygon

Language Solidity

Page of 7 58 Paladin Blockchain Security

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

AdapterBase Dependency

OneInchAdapter 0x9633D6C81E9449B05954B74c257F5964B6864cAA

AaveV3Adapter 0x67709Ce1908077801567998a23Ab3ce10C45727D

BalancerV2Adapter 0x8ebdc47aE80f411b8722E1aCe00DcE28a38Cf273

FeeBoxMATIC 0x1C8126e02e8A7dAc69FD6444Ef0b8be5430DF776

QuickSwapAdapter 0x6C5766Bd236BF879dF4FF468740A8E3FB0Ac12D3

StaderAdapter 0x4E231b636e799d19a54065Ba79A67D8aFA1dDFa0

WmaticGateway 0xdCB3D91555385DaE23e6B966b5626aa7A75Be940

AdapterManager 0x907883da917ca9750ad202ff6395C4C6aB14e60E

AccountManager Not deployed

Automation 0xA79D00C0feA6bAABE8A1fEd0c41C4d36E7B81895

AutomationCallable Dependency

ControllerLib 0xff6771a9565F18638faB2972BA7Fc798ad8bCad0

ControllerLibSub 0xEa5f10A0E612316A47123D818E2b597437D19a17

ControllerLink 0x6E3066412B4e67d2933d6023a7c58d63DD8f800a

BalancerERC3156 (V2) 0xf1a5710a91183e317b17d1A314227B36d1a30b95

ERC2612Verifier 0xE946Dd7d03F6F5C440F68c84808Ca88d26475FC5

TokenApprovalVerifier 0x9B2316cfe980515de7430F1c4E831B89a5921137

StaderAirdrop 0x406e1e0e3cb4201B4AEe409Ad2f6Cd56d3242De7

Timelock 0xCe672de0D2d38944716c21BCA7DB1164685Af2aC

TimelockCallable Dependency

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

N/A

MATCH

MATCH

MATCH

Page of 8 58 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

1 1 - -

4 2 1 1

7 4 - 3

9 2 - 7

Total 21 9 1 11

 High

 Informational

 Low

 Medium

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 Informational

 High

 Medium

Page of 9 58 Paladin Blockchain Security

1.3.1	 Global Issues

1.3.2	 AdapterBase

1.3.3	 OneInchAdapter

No issues found.

1.3.4	 AaveV3Adapter

ID Severity Summary Status

01 Typographical errors INFO ACKNOWLEDGED

ID Severity Summary Status

02 Adapters will not fail if a wrong function is calledMEDIUM PARTIAL

ID Severity Summary Status

03 Matic can get stuck in the contract during a deposit

04 Withdrawals can be blocked if a token is removed from the list of
trusted tokens

05 Lack of events for the initialize function

06 AaveRepay event might emit the wrong parameter

07 Unused import: IAToken.sol

RESOLVED

INFO

RESOLVED

ACKNOWLEDGED

ACKNOWLEDGED

LOW

INFO

LOW

ACKNOWLEDGED

INFO

Page of 10 58 Paladin Blockchain Security

1.3.5	 BalancerV2Adapter

1.3.6	 FeeBoxMatic

No issues found.

1.3.7	 VerifierBasic

No issues found.

1.3.8	 QuickSwapAdapter

1.3.9	 StaderAdapter

ID Severity Summary Status

08 The adapter does not return leftover balances

09 The adapter is not compatible with tokens that have a fee on
transfer

HIGH

MEDIUM

RESOLVED

RESOLVED

ID Severity Summary Status

10 The adapter is not compatible with tokens that have a fee on
transfer

11 router can be made constant

RESOLVED

ACKNOWLEDGED

MEDIUM

INFO

ID Severity Summary Status

12 No view function for pending requests

13 Unused variable

14 payable keyword not needed for stakeINFO

LOW RESOLVED

ACKNOWLEDGED

ACKNOWLEDGED

INFO

Page of 11 58 Paladin Blockchain Security

1.3.10	 WmaticGateway

No issues found.

1.3.11	 AdapterManager

No issues found.

1.3.12	 AccountManager

1.3.13	 Automation

No issues found.

1.3.14	 AutomationCallable

No issues found.

ID Severity Summary Status

15 Authorized addresses are difficult to query ACKNOWLEDGEDLOW

Page of 12 58 Paladin Blockchain Security

1.3.15	 ControllerLib

1.3.16	 ControllerLibSub

No issues found.

1.3.17	 ControllerLink

No issues found.

1.3.18	 BalancerERC3156 (V2)

1.3.19	 ERC2612Verifier

No issues found.

ID Severity Summary Status

16 Privilege escalation: The approvals functions allow the
advancedTradingEnable boolean to be bypassed

MEDIUM
ACKNOWLEDGED

ID Severity Summary Status

17 maxFlashLoan returns an incorrect value

18 The reentrancy check is flawed

19 vault can be made constant

RESOLVEDLOW

LOW

INFO RESOLVED

RESOLVED

Page of 13 58 Paladin Blockchain Security

1.3.20	 TokenApprovalVerifier

No issues found.

1.3.21	 StaderAirdrop

1.3.22	 Timelock

No issues found.

1.3.23	 TimelockCallable

No issues found.

ID Severity Summary Status

20 Rewards can be distributed twice if the contract is paused too late

21 Typographical errorINFO

LOW ACKNOWLEDGED

ACKNOWLEDGED

Page of 14 58 Paladin Blockchain Security

2	 	 Findings

2.1	 Global Issues

The issues in this section occur across multiple contracts within the protocol.

Page of 15 58 Global Issues Paladin Blockchain Security

2.1.1		 Issues & Recommendations

Issue #01 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

ProxyWallet::40 (example for variables)

address public immutable userDatabase;

ProxyWallet::76 (example for parameters)

function proxyAdminCheck(address defaultProxyAdmin)

Throughout the codebase, tokens and other contracts are almost
never cast to their correct type. This requires the developer to then
explicitly cast them to IERC20, IControllerLink,
IAdapterManager, etc. The developer should consider always
immediately specifying the types as the correct types instead of
using the generic “address” type. Although this will not affect gas
usage, it heavily simplifies the codebase and also indicates to third
parties that the developer has a good understanding of solidity best
practice.

pragma solidity >=0.8.0 <0.9.0;

This can be simplified to pragma solidity ^0.8.0 which restricts
the version to 0.8 compatible versions as well.

Recommendation Consider fixing the typographical errors.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 16 58 Global Issues Paladin Blockchain Security

2.2	 Adapters/AdapterBase

This is the code for the AdapterBase contract, which is an abstract contract that
defines a basic adapter template. The contract is Ownable, which means that it has
an owner address that can be used to control access to the contract's functions.
The contract is also TimelockCallable, which means that it can be called by a
Timelock contract.

The contract has a constructor function that takes an adapter manager address, a
timelock address, and a name for the adapter as input. The contract also has
functions for pulling tokens from an address, approving tokens, returning assets to
an address, and sweeping assets from an address.

Note that the privileged functions are present in all adapters and will not be
repeated in the following adapter sections.

No significant changes were made since the Avalanche audit. Acknowledged issues
from the previous audit are not listed again (as goes for all contracts within this
audit).

2.2.1	 Privileged Functions

• sweep [timelock]

• transferOwnership [owner]

• renounceOwnership [owner]

• setTimelock [timelock]

Page of 17 58 AdapterBase Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #02 Adapters will not fail if a wrong function is called

Severity

Description AdapterBase is inherited by all adapters and defines an empty
fallback and an empty receive function. This means that any
adapter can receive Ether directly, and if a function is called that
was not defined in the adapter, the transaction would not fail.

For example, if someone calls an Aave function using the 1inch
Adapter, the function will not revert. This issue becomes annoying
when calling multiple adapters at a time because you would not
know which call did nothing.

Additionally, any adapter can receive Matic directly even if they
should not ever receive Matic directly.

Recommendation Consider removing the fallback/receive functions and defining it
only within the adapter that needs them.

Resolution

MEDIUM SEVERITY

The fallback function was removed, but the receive function was
kept.

PARTIALLY RESOLVED

Page of 18 58 AdapterBase Paladin Blockchain Security

2.3	 Adapters/OneInchAdapter

OneInchAdapter inherits from the AdapterBase contract and allows for automation
to use 1inch to swap for a wallet.

The contract also defines a public constant for the oneInchRouter which is hard-
coded to be the address 0x1111111254fb6c44bAC0beD2854e76F90643097d.

Finally, the contract defines a function called swap which can be called via
delegation in order to perform a swap of tokens using the OneInchRouter contract.
The function takes two arguments (a bytes memory callArgs, and a uint256
amountETH), and blindly uses these to call the OneInchRouter contract, requiring
said call to succeed. Any function can therefore be called on the router.

OneInchAdapter is a delegatecall adapter.

2.3.1	 Issues & Recommendations

No issues found. 

Page of 19 58 OneInchAdapter Paladin Blockchain Security

2.4	 Adapters/AaveV3Adapter

AaveV3Adapter allows CIAN users to interact with the AaveV3 protocol on the
Polygon network. Users can deposit, withdraw, borrow, repay, claim rewards and
activate EMode.

The following functions are meant to be called by the AdapterManager:

- deposit

- withdraw

The following functions are only callable via delegatecall:

- setCollateral

- borrow

- approveDelegation

- payback

- claimRewards

- setUserEMode

2.4.1	 Privileged Functions

• initialize [onlyTimelock] 

Page of 20 58 AaveV3Adapter Paladin Blockchain Security

2.4.2	 Issues & Recommendations

Issue #03 Matic can get stuck in the contract during a deposit

Severity

Description The deposit function does not check that the msg.value is 0 when
adding a token other than Matic.

A deposit with bad parameters could lock Matic in that contract.

Recommendation Consider checking that msg.value is 0 during a deposit of a token
that is not Matic.

Resolution

The msg.value check was added.

RESOLVED

LOW SEVERITY

Issue #04 Withdrawals can be blocked if a token is removed from the list of
trusted tokens

Severity

Description The withdraw function uses the list of trusted tokens to return the
address of the aToken. However, if a token was once in the trusted
list and subsequently removed, users will not be able to withdraw
from Aave using the adapter.

This issue is only rated as low as users would still be able to use
Aave directly to withdraw their tokens.

Recommendation Consider whether this is a problem, and if it is, consider fixing it.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 21 58 AaveV3Adapter Paladin Blockchain Security

Issue #05 Lack of events for the initialize function

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution ACKNOWLEDGED

INFORMATIONAL

Issue #06 AaveRepay event might emit the wrong parameter

Severity

Description Currently, the AaveRepay event emits the following:

emit AaveRepay(tokenAddr, amount, address(this), rateMode);

While this works for all standard operations, an incorrect parameter
is emitted if amount is uintMax:

if (amount == type(uint256).max) {

uint256 repayValue =

IERC20(debtMaticAddr).balanceOf(address(this));

For this case, the event should emit repayValue instead of amount.

Recommendation Consider updating the amount value directly instead of using
repayValue. That way, the event will be emitted with the right
amount directly.

if (amount == type(uint256).max) {

amount = IERC20(debtMaticAddr).balanceOf(address(this));

Resolution RESOLVED

INFORMATIONAL

Page of 22 58 AaveV3Adapter Paladin Blockchain Security

Issue #07 Unused import: IAToken.sol

Severity

Description Variables, functions and imports that are defined within the code
but never used can be removed to make the coder cleaner and more
readable.

Recommendation Consider removing the following import:

import "../../../interfaces/aave/v2/IAToken.sol";

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 23 58 AaveV3Adapter Paladin Blockchain Security

2.5	 Adapters/BalancerV2Adapter

BalancerV2Adapter allows CIAN users to swap tokens using the Balancer protocol.
The user can choose between two swap methods:

- batchSwap

- singleSwap

Essentially, users can either swap a token for another token using just one pool
(singleSwap) or they can swap one token for another and then again for another
token using multiple pools. This can also be done using only a partial amount of
each index token (batchSwap).

Page of 24 58 BalancerV2Adapter Paladin Blockchain Security

2.5.1	 Issues & Recommendations

Issue #08 The adapter does not return leftover balances

Severity

Description The adapter calls pullAndApprove with the amount limit[0]. This
amount is meant to be the maximum amount that can be used for a
swap. Consider the following scenario:

1. Alice wants to swap USDT to WETH.

2. Alice selects kind as GIVEN_OUT.

3. GIVEN_OUT calculates amountIn based on the desired output
amount poolRequest.amount.

4. Alice uses limit[0] as 1400 and singleSwap.amount as 1. This
means Alice intends to swap her USDT to 1 WETH with a
maximum spending limit of 1400 USDT.

5. The Adapter now executes a transferFrom of 1400 USDT from
Alice and executes the swap.

6. The actual price is however 1300 USDT per WETH which results
in the Balancer protocol only taking 1300 USDT from the
Adapter: 
 
_receiveAsset(singleSwap.assetIn, amountIn,
funds.sender, funds.fromInternalBalance);

7. This results in the leftover balance of 100 USDT stuck in the
Adapter while only the owner can withdraw the token sent in
excess, thus essentially resulting in a loss for Alice.

Moreover, within _handleRemainingEth, the leftover Ether is sent
to msg.sender, which is the adapter.

This PoC applies to both singleSwap and batchSwap.

Recommendation Consider calculating the difference between input[0] and the
amount which was actually taken by the Balancer protocol, then
send it back to the user at the end of the function. Additionally,
_handleRemainingEth should send the leftover amount back to
funds.recipient or tx.origin.

HIGH SEVERITY

Page of 25 58 BalancerV2Adapter Paladin Blockchain Security

Resolution

Additionally, a non-reentrant check was also added to prevent
reentrancy.

RESOLVED

Issue #09 The adapter is not compatible with tokens that have a fee on
transfer

Severity

Description The adapter is not compatible with the swapping of tokens that
have a fee on transfer. This issue essentially arises when limit[0] is
transferred via pullAndApprove, as the contract will receive less
tokens which will eventually result in a revert within _receiveAsset.

Recommendation Consider either acknowledging this issue or adding logic to support
tokens with a fee on transfer.

Resolution

MEDIUM SEVERITY

However, a before-after pattern should be added.

RESOLVED

Page of 26 58 BalancerV2Adapter Paladin Blockchain Security

2.6	 Adapters/FeeBoxMATIC

FeeBoxMATIC is responsible for taking fees from users' wallets to subsidize gas and
management costs for the operators that execute automation jobs on their behalf.

All functions are meant to be called by the AdapterManager.

2.6.1	 Privileged Functions

• initialize [timelock]

• setAdapterManager [timelock]

• paymentCheck [balanceController]

• setBalance [balanceController]

2.6.2	 Issues & Recommendations

No issues found.

Page of 27 58 FeeBoxMATIC Paladin Blockchain Security

2.7	 Adapters/VerifierBasic

VerifierBasic is used by the various FeeBoxes to validate signatures.

2.7.1	 Issues & Recommendations

No issues found.

Page of 28 58 VerifierBasic Paladin Blockchain Security

2.8	 Adapters/QuickSwapAdapter

QuickSwapAdapter allows CIAN users to swap tokens using the QuickSwap
decentralized exchange (DEX). Users can execute the following swaps:

- ETH -> exact tokens

- exact ETH -> tokens

- tokens -> exact tokens

- exact tokens -> tokens

- tokens -> exact ETH

- exact tokens -> ETH

QuickSwapAdapter is solely meant to be called by the user via the AdapterManager
contract.

Page of 29 58 QuickSwapAdapter Paladin Blockchain Security

2.8.1	 Issues & Recommendations

Issue #10 The adapter is not compatible with tokens that have a fee on
transfer

Severity

Description Currently, the adapter is not compatible with swapping tokens that
have a fee on transfer.

Recommendation Consider acknowledging this issue if support for such tokens is not
intended, otherwise consider implementing all swap functions to
support such tokens. Moreover, if these functions are implemented,
the logic for pullTokensIfNeeded must be adjusted because the
contract will receive fewer tokens, and therefore, the transfer from
the adapter to the pair will revert.

Resolution RESOLVED

MEDIUM SEVERITY

Issue #11 router can be made constant

Severity

Location L10

IQuickSwapRouter internal router =

IQuickSwapRouter(routerAddr);

Description Variables that are never modified can be indicated as such with the
constant keyword. This is considered best practice since it makes
the code more accessible for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly constant to save gas.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 30 58 QuickSwapAdapter Paladin Blockchain Security

2.9	 Adapters/StaderAdapter

StaderAdapter allows CIAN users to interact with the Stader Labs protocol under
the following address: 0xfd225C9e6601C9d38d8F98d8731BF59eFcF8C0E3.
StaderAdapter is a pure delegatecall adapter meant to be called by the users’
proxy.

Users can:

1. stake, which means swapping MATIC for maticX.

2. requestUnstake, which swaps maticX to MATIC and prepares the corresponding
MATIC to be claimed by the user after a lockup.

3. claimUnlocked, which simply claims the requested position after the lockup
period.

Page of 31 58 StaderAdapter Paladin Blockchain Security

2.9.1	 Issues & Recommendations

Issue #12 No view function for pending requests

Severity

Description Currently, the adapter only has the function claimUnlocked which
claims the position based on the index parameter. However, there is
no way for the user to see their actual requested positions other
than interacting with the Stader smart contract directly using the
proxy address as a parameter.

Recommendation Consider implementing a view function that fetches the data from
getUserMaticXSwapRequests.

Resolution

LOW SEVERITY

RESOLVED

Issue #13 Unused variable

Severity

Location L8 & L9

address public constant maticXAddr =

0xfa68FB4628DFF1028CFEc22b4162FCcd0d45efb6;

Description The variable above is unused.

Recommendation Consider removing the unused variable.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 32 58 StaderAdapter Paladin Blockchain Security

Issue #14 payable keyword not needed for stake

Severity

Description While the stake function indeed transfers Matic to another
contract, it is only callable via a delegatecall. However, as a
delegate call cannot have a msg.value, the Matic would be
transferred to the same contract which would just be a waste of gas.

Recommendation Consider removing the payable keyword.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 33 58 StaderAdapter Paladin Blockchain Security

2.10	 Adapters/WmaticGateway

WmaticGateway is a simple adapter that allows for the depositing and withdrawal of
Wmatic from and into Matic.

It should be noted that withdrawing Wmatic straight into a proxy is generally a
discouraged practice due to the fallback logic of a proxy costing potentially too
much gas for the gas-limited transfer to succeed. However, as the wallet proxy
presently has a receive() override, this should not cause a problem for now.
Generally and informationally speaking, a non-upgradeable helper contract is used
to withdraw WETH instead of the approach which is taken here.

WmaticGateway is a delegationcall adapter.

2.10.1	 Issues & Recommendations

No issues found.

Page of 34 58 WmaticGateway Paladin Blockchain Security

2.11	 Adapters/AdapterManager

AdapterManager is the main registry for all Cian adapters. An adapter is a smart
contract that Cian operators can use to execute functionality for users on their
wallets.

The manager can also be paused by various Cian approved pause guardians. This
prevents operators from executing calls on user wallets and can be used as an
emergency safeguard if an adapter has a vulnerability.

2.11.1	 Privileged Functions

• execute [user proxies]

• registerAdapters [timelock]

• unregisterAdapters [timelock]

• setPauseWhiteList [timelock]

• setPause [suspend permissioned accounts & owner can pause, timelock can

unpause]

2.11.2	 Issues & Recommendations

No issues found. 

Page of 35 58 AdapterManager Paladin Blockchain Security

2.12	 Core/AccountManager

AccountManager is a helper contract that is deployed for each user that aims to
increase the comfort when handling an arbitrary amount of Accounts. The owner of
this contract can add various Accounts to the AccountManager and grant arbitrary
addresses privileged rights to execute the following functions for a userAccount
(IAccount) on the previously added Accounts:

- createSubAccount

- executeOnAdapter

- executeMulticall

- setAdvancedOption

- callOnSubAccount

- withdrawAssets

- approveTokens

It also allows privileged addresses to call approve on the ERC2612Verifier as well
on the tokenApprovalVerifier contract.

As mentioned above, the owner of this contract has the privilege to add and delete
accounts via addAccounts and delAccounts. Before any accounts can be added,
the ownership of this account must be transferred to the AccountManager.

The most privileged function is the setAuthorization function which allows the
owner to set any address as executor for specific operations for any account within
a certain deadline.

Page of 36 58 AccountManager Paladin Blockchain Security

These are the following operations that can be assigned to the executor:

- CREATE_SUBACCOUNT

- EXECUTE_ON_ADAPTER

- MULTICALL

- SET_ADVANCED_OPTION

- CALL_ON_SUBACCOUNT

- WITHDRAW_ASSETS

- APPROVE_TOKENS

- APPROVE_ERC2612_VERIFIER

- APPROVE_TOKEN_VERIFIER

If an address was set as executor for an account with the correct operation, it can
execute the function which was assigned to the operation arbitrarily often within the
determined deadline.

The owner can also freely define the ERC2612Verifier and the
TokenApprovalVerified as well as change the minDelay and maxDelay which is
used for granting the authorization.

2.12.1	 Privileged Functions

• transferOwnership

• renounceOwnership

• setDelay

• setVerifier

• addAccounts

• delAccounts

• setAuthorization

Page of 37 58 AccountManager Paladin Blockchain Security

2.12.2	 Issues & Recommendations

Issue #15 Authorized addresses are difficult to query

Severity

Description An account could forget which address they authorized. They would
need to query events to get them, which is a complicated process,
and not all users may be able to do that.

Recommendation Consider adding the authorized address to a set so the user can
query which address was authorized for which accounts more
easily.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 38 58 AccountManager Paladin Blockchain Security

2.13	 Core/Automation

Automation is the core authorization contract used by all wallets. Operators must
go through the Automation contract if they wish to execute automation tasks on a
user wallet. Automation will then call the ERC2612Verifier to check if the operator
has permission to execute the specific action for the user.

TokenApprovalVerifier will be queried if the action deals with tokens.

The user can also set a LoanProvider that will be used for flashloans, and if none
are defined, the default one will be used.

2.13.1	 Privileged Functions

• setLoanProvider [only account owner]

• autoExecute [only approved adapters]

• autoExecuteMultiCall [only approved adapters]

• autoApprove [only if 0 was approved and spender needs to have been

approved]

• autoApproveWithPermit [only if 0 was approved and owner has signed a

message to permit]

• doFlashLoan [only if 1 was approved]

• autoExecuteOnSubAccount [only if 2 was approved]

• doFlashLoanOnSubAccount [only if 3 was approved]

Page of 39 58 Automation Paladin Blockchain Security

2.13.2	 Issues & Recommendations

No issues found.

Page of 40 58 Automation Paladin Blockchain Security

2.14	 Core/AutomationCallable

AutomationCallable is a contract that needs to be inherited to allow the contract
to set an autoExecutor which allows it to execute tasks on the contract.

2.14.1	 Issues & Recommendations

No issues found.

Page of 41 58 AutomationCallable Paladin Blockchain Security

2.15	 Core/ControllerLib

ControllerLib represents the core contract of the CIAN architecture — it is the
implementation of the user’s ProxyWallet, which is their virtual wallet.
ControllerLib, therefore, contains all core logic for the user and other system
components to manage the user's virtual wallet.

It allows the user to force their virtual wallet to execute arbitrary logic through
either calls or delegatecalls. It also allows the user to approve various controllers to
execute logic on adapters for them. These controllers do this by calling the
CallProxy (called the “automation” in this contract) which is also described within
this audit. The CallProxy then validates the request and forwards it to the user's
virtual wallet.

2.15.1	 Privileged Functions

• createSubAccount [owner]

• executeOnAdapter [automation / owner]

• multiCall [automation / owner]

• callDirectly [owner]

• callOnSubAccount [automation / owner]

• setAdvancedOption [owner]

• withdrawAssets [owner]

• approve [automation / owner]

• approveTokens [automation / owner]

• transferOwnership [owner]

• renounceOwnership [owner]

• reinitialize [owner] 

Page of 42 58 ControllerLib Paladin Blockchain Security

2.15.2	 Issues & Recommendations

Issue #16 Privilege escalation: The approvals functions allow the
advancedTradingEnable boolean to be bypassed

Severity

Location L299–339 

function withdrawAssets(

	 address[] memory _tokens,

	 address _receiver,

	 uint256[] memory _amounts

) external onlyOwner {

	 [...]

}

function approve(

	 IERC20 _token,

	 address _spender,

	 uint256 _amount

) external onlyAutomationOrOwner {

	 [...]

}

function approveTokens(

	 IERC20[] memory _tokens,

	 address[] memory _spenders,

	 uint256[] memory _amounts

) external onlyAutomationOrOwner {

	 [...]

}

Description In order to withdraw tokens to an external address, the owner
needs to allow advancedOptionEnable. A privilege escalation can
occur by approving an external address as the spender. This
spender can then call transferFrom to withdraw the tokens.

This can be done by the owner or the automation.

Recommendation Consider whether this is an issue, and if so, consider preventing
these functions from being called when that bool is set to false.

MEDIUM SEVERITY

Page of 43 58 ControllerLib Paladin Blockchain Security

Resolution

The team does not consider this an issue since the advanced mode
is to let users execute arbitrary operations rather than withdrawing
funds.

ACKNOWLEDGED

Page of 44 58 ControllerLib Paladin Blockchain Security

2.16	 Core/ControllerLibSub

ControllerLibSub represents a sub-wallet of the main ControllerLib wallet with
less strict permission controls. The main wallet has full authorization over this sub
wallet as well as the main wallet owner.

Most of the issues from ControllerLib are present here as well.

2.16.1	 Privileged Functions

• reinitialize [eoa owner]

• withdrawAssets [eoa owner]

• approveTokens [eoa owner]

• executeOnAdapter [owner: parent wallet]

• multiCall [owner: parent wallet]

2.16.2	 Issues & Recommendations

No issues found.

Page of 45 58 ControllerLibSub Paladin Blockchain Security

2.17	 Core/ControllerLink

ControllerLink is a helper contract that acts like a user database. Every time a
new ProxyWallet is created, it is added to the ControllerLink mappings.

2.17.1	 Privileged Functions

• addAuth [factory]

• removeAuth [owner]

• transferOwnership [owner]

• renounceOwnership [owner]

2.17.1	 Privileged Functions

No issues found. 

Page of 46 58 ControllerLibSub Paladin Blockchain Security

2.18	 Core/BalancerERC3156 (V2)

BalancerERC3156 is a simple user interface for executing flashloans. The user can
request a flashloan from the vault with an arbitrary borrower address as receiver.

The vault will then send the tokens to the contract and these tokens will then be
sent to the borrower to execute its logic with the tokens.

After the logic is executed, BalancerERC3156 will take the tokens + fee from the
borrower and send it back to the vault.

Page of 47 58 BalancerERC3156 (V2) Paladin Blockchain Security

2.18.1	 Issues & Recommendations

Issue #17 maxFlashLoan returns an incorrect value

Severity

Description Currently, the maxFlashLoan returns uint256(max); however, the
function name indicates that the goal for this function is to return
the maximum flashloan amount.

Recommendation Consider removing this function or adding logic that returns the
maximum possible amount of a flashloan for a specific token, i.e.
the token’s balance of the vault.

Resolution RESOLVED

LOW SEVERITY

Issue #18 The reentrancy check is flawed

Severity

Location L70

require(executor != address(0), "reEntrance");

Description This requirement is not a reentrancy check, but it ensures that the
flashloan was initiated by this contract with the flashLoan function.
A reentrancy could in theory still be made, though we are sure the
balancer implementation protects against this.

Recommendation Consider reverting with a more accurate message.

Also, if a reentrancy check was needed, there can be a check that
executor is address(0) at line 50.

Resolution RESOLVED

LOW SEVERITY

Page of 48 58 BalancerERC3156 (V2) Paladin Blockchain Security

Issue #19 vault can be made constant

Severity

Description Variables that are never modified can be indicated as such with the
constant keyword. This is considered best practice since it makes
the code more accessible for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly constant.

Resolution

INFORMATIONAL

RESOLVED

Page of 49 58 BalancerERC3156 (V2) Paladin Blockchain Security

2.19	 Core/ERC2612Verifier

ERC2612Verifier allows users to specify if they approve basic operations and/or
specific adapters. Those approvals are represented using ids. If a user wants to
allow a specific id, they need to call approve with 2^id as the approvalType.

In addition, an user can sign a message to approve an adapter without ever calling
the function themselves.

Currently the basic operations are:

- (2^0): approve a token

- (2^1): allow flashloans on Balancer

The id of the different adapters will be chosen by the team.

Note that any approval will overwrite all previous approvals. This means that the
user must be extremely careful with their transaction bytes, as it will be
exceptionally difficult to figure out which adapter they are approving.

2.19.1	 Privileged Functions

• approve [only owner of that account]

• revoke [only owner of that account]

2.19.1	 Issues & Recommendations

No issues found. 

Page of 50 58 ERC2612Verifier Paladin Blockchain Security

2.20	 Core/TokenApprovalVerifier

TokenApprovalVerifier allows users to approve different addresses to use the
tokens that are in their proxies. They can also sign a message that can be used to
approve on behalf of the user.

2.20.1	 Privileged Functions

• approve [proxies owner]

2.20.2	 Issues & Recommendations

No issues found. 

Page of 51 58 TokenApprovalVerifier Paladin Blockchain Security

2.21	 Core/StaderAirdrop

StaderAirdrop contract is a simple airdrop contract that uses merkleTree
cryptography to whitelist specific addresses with specific amounts without having to
set amounts on-chain, which is way more expensive.

The owner simply adds addresses and amounts as leaves to the Merkle tree,
calculates the root, and then calls updateMerkleRoot with the calculated root.

Any address can then claim the assigned amount on behalf of the privileged
address. The contract allows for unlimited rounds, and each round changes when a
new merkleRoot is set via updateMerkleRoot. Each address can only be claimed
once per round.

2.21.1	 Privileged Functions

• pause

• unpause

• sweep

• updateMerkleRoot

Page of 52 58 StaderAirdrop Paladin Blockchain Security

2.21.2	 Issues & Recommendations

Issue #20 Rewards can be distributed twice if the contract is paused too late

Severity

Description Unclaimed rewards are added to the next round. However, if the
root is calculated before calling pause, some users could have
claimed between the time the root was calculated and set to the
Merkle tree. These users would then receive twice the amount of
the previous round.

This issue is only rated as low as updateMerkleRoot is only callable
when the contract is paused, which shows that the right flow is the
expected one. We have raised this issue it to ensure it is not
forgotten.

Recommendation Consider carefully pausing the contract before calculating the next
root.

Resolution

LOW SEVERITY

This is the expected flow.

ACKNOWLEDGED

Issue #21 Typographical error

Severity

Location L34-35

//Handle when someone else accidentally transfers assets to

this contract, or if we

//need to migration to a new contract.

Description This should be changed to ‘need to migrate to a new contract’.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 53 58 StaderAirdrop Paladin Blockchain Security

2.22	 Timelock

Timelock is a clean fork of Compound Finance’s timelock. This is the most common
contract used in DeFi to time lock governance access and is thus compatible with
most third-party tools.

Timelock allows an administrator to set a delay before transactions are executed,
which must be between 12 hours and 30 days. This prevents the administrator from
executing transactions without first announcing them beforehand. Transactions can
be queued by the administrator, and they will be executed after the delay has
passed. If a transaction is not executed within the grace period, it is considered
stale and will not be executed. This ensures that only transactions which have been
properly announced and queued will be executed, preventing the administrator
from executing unauthorized or malicious transactions.

The admin is the account which has been designated as the owner of the Timelock
contract.

Page of 54 58 Timelock Paladin Blockchain Security

2.22.1	 Privileged Functions

• setDelay [timelock itself]

• setPendingAdmin [timelock itself]

• acceptAdmin [new owner]

• queueTransaction [owner]

• cancelTransaction [owner]

• executeTransaction [owner]

Parameter Value Description

Delay 12 hours The delay indicates the time the administrator has to wait after
queuing a transaction to execute it.

Minimum
Delay

12 hours The minDelay indicates the lowest value that the delay can
minimally be set.

Sometimes, projects will queue a transaction that sets the
delay to zero with the hope that nobody notices it. However,
because of the minimum delay parameter, the value of delay
can never be lower than that of the minDelay value. Note that
the administrator could still queue a transaction to simply
transfer the ownership back to their own account so it is still
important to inspect every transaction carefully.

Grace Period 14 days After the delay has expired after queueing a transaction, the
administrator can only execute it within the grace period. This
is to prevent them from hiding a malicious transaction among
much earlier transactions, hoping that it goes unnoticed or
buried, which can be executed in the future.

Page of 55 58 Timelock Paladin Blockchain Security

2.22.2	 Issues & Recommendations

No issues found. 

Page of 56 58 Timelock Paladin Blockchain Security

2.23	 TimelockCallable

TimelockCallable is an abstract contract that is meant to be inherited by various
contracts. It contains logic that allows certain functions to get only executed by the
Timelock.

The timelock can be changed by the timelock by calling the setTimelock function.

2.23.1	 Privileged Functions

• setTimelock (onlyTimelock)

2.23.2	 Issues & Recommendations

No issues found. 

Page of 57 58 TimelockCallable Paladin Blockchain Security

Page of 58 58 TimelockCallable Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 AdapterBase
	1.3.3 OneInchAdapter
	1.3.4 AaveV3Adapter
	1.3.5 BalancerV2Adapter
	1.3.6 FeeBoxMatic
	1.3.7 VerifierBasic
	1.3.8 QuickSwapAdapter
	1.3.9 StaderAdapter
	1.3.10 WmaticGateway
	1.3.11 AdapterManager
	1.3.12 AccountManager
	1.3.13 Automation
	1.3.14 AutomationCallable
	1.3.15 ControllerLib
	1.3.16 ControllerLibSub
	1.3.17 ControllerLink
	1.3.18 BalancerERC3156 (V2)
	1.3.19 ERC2612Verifier
	1.3.20 TokenApprovalVerifier
	1.3.21 StaderAirdrop
	1.3.22 Timelock
	1.3.23 TimelockCallable

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 Adapters/AdapterBase
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Adapters/OneInchAdapter
	2.3.1 Issues & Recommendations

	2.4 Adapters/AaveV3Adapter
	2.4.1 Privileged Functions
	2.4.2 Issues & Recommendations

	2.5 Adapters/BalancerV2Adapter
	2.5.1 Issues & Recommendations

	2.6 Adapters/FeeBoxMATIC
	2.6.1 Privileged Functions
	2.6.2 Issues & Recommendations

	2.7 Adapters/VerifierBasic
	2.7.1 Issues & Recommendations

	2.8 Adapters/QuickSwapAdapter
	2.8.1 Issues & Recommendations

	2.9 Adapters/StaderAdapter
	2.9.1 Issues & Recommendations

	2.10 Adapters/WmaticGateway
	2.10.1 Issues & Recommendations

	2.11 Adapters/AdapterManager
	2.11.1 Privileged Functions
	2.11.2 Issues & Recommendations

	2.12 Core/AccountManager
	2.12.1 Privileged Functions
	2.12.2 Issues & Recommendations

	2.13 Core/Automation
	2.13.1 Privileged Functions
	2.13.2 Issues & Recommendations

	2.14 Core/AutomationCallable
	2.14.1 Issues & Recommendations

	2.15 Core/ControllerLib
	2.15.1 Privileged Functions
	2.15.2 Issues & Recommendations

	2.16 Core/ControllerLibSub
	2.16.1 Privileged Functions
	2.16.2 Issues & Recommendations

	2.17 Core/ControllerLink
	2.17.1 Privileged Functions
	2.17.1 Privileged Functions

	2.18 Core/BalancerERC3156 (V2)
	2.18.1 Issues & Recommendations

	2.19 Core/ERC2612Verifier
	2.19.1 Privileged Functions
	2.19.1 Issues & Recommendations

	2.20 Core/TokenApprovalVerifier
	2.20.1 Privileged Functions
	2.20.2 Issues & Recommendations

	2.21 Core/StaderAirdrop
	2.21.1 Privileged Functions
	2.21.2 Issues & Recommendations

	2.22 Timelock
	2.22.1 Privileged Functions
	2.22.2 Issues & Recommendations

	2.23 TimelockCallable
	2.23.1 Privileged Functions
	2.23.2 Issues & Recommendations

