
Page of 1 106 Paladin Blockchain Security

Smart Contract
Security Assessment

For Cian
25 October 2022

paladinsec.co info@paladinsec.co

Final Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
5

1 Overview	
6

1.1 Summary	
6

1.2 Contracts Assessed	
7

1.3 Findings Summary	
8

1.3.1 Global Issues	
9

1.3.2 ProxyWallet	
9

1.3.3 ControllerLib	
10

1.3.4 WalletFactory	
11

1.3.5 CallProxy/CallProxyLib	
11

1.3.6 ERC2612Verifier	
12

1.3.7 ControllerLink	
12

1.3.8 Record	
12

1.3.9 ProxyCallable	
13

1.3.10 AdapterManager	
13

1.3.11 AdapterBase	
14

1.3.12 WavaxGateway	
14

1.3.13 SAVAXAdapter	
14

1.3.14 TraderJoeAdapter	
15

1.3.15 FeeBoxAVAX, FeeBoxSAVAX and FeeBoxToken	
15

1.3.16 VerifierBasic	
16

1.3.17 BankerJoeAdapter / BenqiAdapter	
16

1.3.18 JoeERC3156	
17

1.3.19 Timelock	
17

2 Findings	
18

2.1 Global Issues	
18

Page of 2 106 Paladin Blockchain Security

2.1.3 Issues & Recommendations	
19

2.2 ProxyWallet	
22

2.2.1 Privileged Functions	
22

2.2.2 Issues & Recommendations	
23

2.3 ControllerLib	
25

2.3.1 Privileged Functions	
26

2.3.2 Issues & Recommendations	
27

2.4 WalletFactory	
38

2.4.1 Privileged Functions	
38

2.4.2 Issues & Recommendations	
39

2.5 CallProxy/CallProxyLib	
43

2.5.1 Privileged Functions	
43

2.5.2 Issues & Recommendations	
44

2.6 ERC2612Verifier	
51

2.6.1 Privileged Functions	
51

2.6.2 Issues & Recommendations	
52

2.7 ControllerLink	
54

2.7.1 Privileged Functions	
54

2.7.2 Issues & Recommendations	
55

2.8 Record	
59

2.8.1 Privileged Functions	
59

2.8.2 Issues & Recommendations	
60

2.9 ProxyCallable	
62

2.9.1 Issues & Recommendations	
63

2.10 AdapterManager	
64

2.10.1 Privileged Functions	
64

2.10.2 Issues & Recommendations	
65

2.11 AdapterBase	
71

2.11.1 Privileged Functions	
71

2.11.2 Issues & Recommendations	
72

Page of 3 106 Paladin Blockchain Security

2.12 WavaxGateway	
75

2.12.1 Issues & Recommendations	
76

2.13 SAVAXAdapter	
77

2.13.1 Issues & Recommendations	
78

2.14 TraderJoeAdapter	
79

2.14.1 Privileged Functions	
79

2.14.2 Issues & Recommendations	
80

2.15 FeeBoxAVAX, FeeBoxSAVAX and FeeBoxToken	
86

2.15.1 Privileged Functions	
86

2.15.2 Issues & Recommendations	
87

2.16 VerifierBasic	
91

2.16.1 Issues & Recommendations	
92

2.17 BankerJoeAdapter / BenqiAdapter	
94

2.17.1 Privileged Functions	
94

2.17.2 Issues & Recommendations	
95

2.18 JoeERC3156	
100

2.18.1 Issues & Recommendations	
101

2.19 Timelock	
105

2.19.1 Issues & Recommendations	 105

Page of 4 106 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so. 

Page of 5 106 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Cian on the Avalaunch network. Paladin provides
a user-centred examination of the smart contracts to look for vulnerabilities, logic
errors or other issues from both an internal and external perspective.

1.1	 	 Summary

Project Name Cian

URL https://cian.app/

Network Avalanche

Language Solidity

Page of 6 106 Paladin Blockchain Security

https://cian.app/

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

ProxyWallet Deployed by WalletFactory

ControllerLib 0x601954e6AfB77Dac21503DbDfA751fbef9eE5374

WalletFactory 0x15cbFF12d53e7BdE3f1618844CaaEf99b2836d2A

CallProxy Removed; not deployed

CallProxyLib (Renamed
to Automation)

0x056c41b8C2A2E7C6454842C9A62050fa1b5ffbAE

ERC2612Verifier 0x25440d9E199974e705a07DF6F2464291D0ba1e2f

ControllerLink 0x4792e147bCE02E5FF2b1B70416811704B5625446

Record Removed; not deployed

ProxyCallable (Renamed
to AutomationCallable)

Dependency

AdapterManager 0xf8fE4E5Db46D91cC30eae491363dC456e1DaF2fD

AdapterBase Dependency

WavaxGateway 0x28F83cE214462E888787C5cfD0cc08dD439C9920

SAVAXAdapter 0x83B15AB252482E8AfB0E47460B46AaE5F145ec17

TraderJoeAdapter 0xDA7fBbDFf6225e37D349676f7b65684E96dd5C16

FeeBoxAVAX 0xec55E7cfebBE4f878E9dD998d3a038458AC3197D

FeeBoxSAVAX 0xb7ead62ca64A98b21C1212BCC82436D7E7d797c3

FeeBoxToken Removed; not deployed

VeriferBasic Dependency of FeeBoxes

BankerJoeAdapter 0x123d4F3126B0F57B86d15382ec72A444Bb6E77de

BenqiAdapter 0xe7a5b5783bee4C91c2Bdfb00FF5a34426b6b8a02

JoeERC3156 Removed; not deployed

Timelock 0xD3812219eb241053F9cf2b43f9B367c0b28E03DA

MATCH

MATCH

UNUSED

MATCH

MATCH

MATCH

MATCH

UNUSED

UNUSED

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

UNUSED

MATCH

MATCH

MATCH

Page of 7 106 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

7 6 1 -

14 13 1 -

23 16 - 7

49 39 5 5

Total 93 74 7 12

 Informational

 High

 Medium

 Low

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 Informational

 High

 Medium

Page of 8 106 Paladin Blockchain Security

1.3.1	 Global Issues

1.3.2	 ProxyWallet

ID Severity Summary Status

01 Phishing: Users might have difficulties to distinguish malicious
transactions if the frontend is ever compromised

02 Gas optimizations

03 Typographical errors

LOW

INFO

PARTIAL

PARTIAL

ACKNOWLEDGED

INFO

ID Severity Summary Status

04 Proxy receive() function prevents ControllerLib receive() from
being called

05 proxyAdmin can become outdated

LOW
RESOLVED

INFO RESOLVED

Page of 9 106 Paladin Blockchain Security

1.3.3	 ControllerLib

ID Severity Summary Status

06 SELFDESTRUCT can potentially be executed on an uninitialized
implementation

07 _multiCall does not validate that the _certifiedAddress is unset
after the individual iterations are fulfilled allowing a malicious
operator to drain and even destroy user proxies

08 Privilege escalation risk: onFlashLoan multicall callback is a full
privilege escalation and allows governance to potentially drain all
wallets

09 Validation on withdrawAssetsToAccount is almost completely
useless

10 Funds could become permanently lost if a CertifiedAddress or
adapter ever contains the SELFDESTRUCT opcode as it would delete
the proxy

11 ControllerLib contains unnecessary logic which makes it less
generic than it could be

12 adapManager, advancedOptionEnable and CertifiedAddress are
private

13 callBytes of _callOnAdapter unnecessarily contains costETH

14 onFlashLoan does not validate _multiCall parameter lengths

15 Unused import: Record and ProxyAdmin

16 Unused event: ChangeAutomation

17 Lack of events for setCertified, setAdapManager,
setAdvancedOption and the various common functions

18 Typographical errors

INFO

RESOLVED

RESOLVED

LOW

ACKNOWLEDGED

HIGH

LOW

INFO

RESOLVED

RESOLVED

RESOLVED

RESOLVED

LOW

RESOLVED

LOW

RESOLVED

HIGH

INFO RESOLVED

LOW

INFO

MEDIUM

PARTIAL

ACKNOWLEDGED

RESOLVED

HIGH

Page of 10 106 Paladin Blockchain Security

1.3.4	 WalletFactory

1.3.5	 CallProxy/CallProxyLib

ID Severity Summary Status

19 Phishing risk: Malicious admins can be used

20 userDatabase and timelock are private

21 userProxyAdmin may be outdated and may have a shorter length to
userAccount

22 Unused Ownable inheritance

23 Lack of events for setCodeHash and createAccount

24 Typographical error

25 UI functions getUserProxyAdmin and getUserAccount can run out
of gas

RESOLVED

MEDIUM

RESOLVED

INFO

RESOLVEDINFO

INFO

INFO

LOW

RESOLVED

RESOLVED

INFO

RESOLVED

RESOLVED

ID Severity Summary Status

26 Governance Issue: The implementation is a proxy

27 The initialize function does not call the initialize function
safely

28 Adapter load-in allows for loading in a 32 bytes value while an
address is just 20 bytes

29 Unused inheritance: OwnableUpgradeable.sol

30 Unused event: CallForwardSignle

31 Lack of events for setPublicVerifier, setAccountVerifier and
setFlashLoanWhiteList

32 Typographical errors

33 multicalls lack nonzero checks

34 permit can be frontrun and cause denial of service

INFO

HIGH

RESOLVED

ACKNOWLEDGED

RESOLVED

INFO

RESOLVED

ACKNOWLEDGED

INFO

RESOLVED

LOW

RESOLVED

INFO

INFO

RESOLVED

INFO

LOW

RESOLVED

Page of 11 106 Paladin Blockchain Security

1.3.6	 ERC2612Verifier

1.3.7	 ControllerLink

1.3.8	 Record

ID Severity Summary Status

35 The current implementation limit the number of adapter to 240

36 The OperatorUpdate event lacks the approval type variable

37 DOMAIN_SEPARATOR can be made immutable

38 approvals, approve and revoke can be made external

LOW ACKNOWLEDGED

INFO RESOLVED

INFO RESOLVED

RESOLVEDINFO

ID Severity Summary Status

39 The removeAuth function can be called multiple time with the same
values

40 trustFactory and timeLock are private

41 Gas optimizations

42 Typographical and minor errors

INFO

INFO

MEDIUM

PARTIAL

RESOLVED

ACKNOWLEDGED

RESOLVEDLOW

ID Severity Summary Status

43 Any authorized address can become the only authorized address

44 Contract lacks an easy way for users to figure out the list of
authorized addresses through explorer contract inspection

45 Lack of events for initAuth, enable and disable

RESOLVED

MEDIUM RESOLVED

INFO

RESOLVEDINFO

Page of 12 106 Paladin Blockchain Security

1.3.9	 ProxyCallable

1.3.10	 AdapterManager

ID Severity Summary Status

46 Typographical errorINFO ACKNOWLEDGED

ID Severity Summary Status

47 delegatecalls are still possible even if the AdapterManager is
paused

48 unregisterAdapters does not reset adaptersIndex

49 The registerAdapters function allows the addition of too many
adapters

50 _paused and suspendPermissions are private

51 Non-transferrable timelock address might be limiting if the client
ever wants to move to a new governance structure

52 Unused imports, functionality and typographical errors

53 Gas usage: getRegisteredAdapters might run out of gas

54 Lack of events for setPauseWhiteList

55 setPauseWhiteList check can be simplified

RESOLVED

LOW

MEDIUM PARTIAL

RESOLVED

RESOLVED

RESOLVED

LOW

RESOLVED

INFO

INFO

INFO

RESOLVED

INFO

LOW

RESOLVED

RESOLVED

INFO

Page of 13 106 Paladin Blockchain Security

1.3.11	 AdapterBase

1.3.12	 WavaxGateway

1.3.13	 SAVAXAdapter

ID Severity Summary Status

56 Governance privilege: The timelock can potentially sweep wallets
through reentrancy during delegatecalls

57 ADAPTER_NAME is unaccessible during delegate calls

58 Unused import: IWAVAX.sol

59 Typographical errors

60 pullTokensIfNeeded might not pull in enough tokens for tokens
with a fee on transfer

INFO

INFO

ACKNOWLEDGED

PARTIAL

RESOLVED

RESOLVED

INFO

INFO

INFO

RESOLVED

ID Severity Summary Status

61 Typographical error RESOLVEDINFO

ID Severity Summary Status

62 SAVAXAdapter lacks various functionsLOW ACKNOWLEDGED

Page of 14 106 Paladin Blockchain Security

1.3.14	 TraderJoeAdapter

1.3.15	 FeeBoxAVAX, FeeBoxSAVAX and FeeBoxToken

ID Severity Summary Status

63 User can get sandwiched and suffer high slippage

64 The adapter does not allow users to call emergencyWithdraw

65 JoeBar is now deprecated

66 addLiquidityAVAX contains a seemingly redundant transfer

67 depositLpToken and withdrawLpToken can deposit into and
withdraw from Masterchefs other than Trader Joe

68 The JTokenSnapshot structure and IJToken import are unused

69 router can be made constant

70 SafeMath is unnecessary starting from Solidity version 0.8

71 Gas optimizations

LOW

INFO

INFO

RESOLVED

LOW

RESOLVED

RESOLVED

RESOLVED

RESOLVED

MEDIUM

RESOLVED

INFO

RESOLVED

RESOLVEDINFO

RESOLVED

LOW

LOW

ID Severity Summary Status

72 SAVAX redemptions might eventually relock or run out of gas

73 Governance privilege: balanceController can take funds from
users’ accounts

74 Approval flow does not contain necessary safeguards

75 balanceController and feeReceiver are private

76 Lack of events for initialize

77 Typographical and minor errors

HIGH

RESOLVED

LOW

RESOLVED

RESOLVED

MEDIUM

INFO

RESOLVED

MEDIUM

RESOLVED

INFO RESOLVED

Page of 15 106 Paladin Blockchain Security

1.3.16	 VerifierBasic

1.3.17	 BankerJoeAdapter / BenqiAdapter

ID Severity Summary Status

78 recoverSigner allows anyone to fake signatures for the zero
address

79 Unused imports

80 Typographical errorINFO ACKNOWLEDGED

INFO RESOLVED

RESOLVEDHIGH

ID Severity Summary Status

81 Governance privilege: The timelock could be used to steal users’
tokens

82 repay may use an outdated value

83 Operations do not revert if underlying protocols are paused

84 Governance could delist a market making redemption of tokens
complicated

85 GetUserDepositPosition returns wrong values

86 BankerJoeAdapter: Unused event — TraderJoeStake and
TraderJoeUnstake

87 BankerJoeAdapter: Unused variables — joeBarAddr

88 Typographical errors

RESOLVED

LOW

MEDIUM

INFO

RESOLVED

MEDIUM

LOW ACKNOWLEDGED

PARTIAL

RESOLVED

INFO

MEDIUM RESOLVED

INFO

RESOLVED

RESOLVED

Page of 16 106 Paladin Blockchain Security

1.3.18	 JoeERC3156

1.3.19	 Timelock

No issues found.  

ID Severity Summary Status

89 Lack of authentication on flashLoan call

90 The initiator address of the onFlashLoan is not reliable

91 onFlashLoan callback is vulnerable to reentrancy

92 Governance privilege: The timelock could be used to steal users’
tokens

93 Typographical errors

MEDIUM

RESOLVED

MEDIUM

MEDIUM

HIGH

RESOLVED

RESOLVED

RESOLVED

INFO

RESOLVED

Page of 17 106 Paladin Blockchain Security

2	 	 Findings

2.1	 Global Issues

The issues in this section apply to the protocol as a whole. We have consolidated
the global issues to simplify the report.

Page of 18 106 Global Issues Paladin Blockchain Security

2.1.3	 Issues & Recommendations

Issue #01 Phishing: Users might have difficulties to distinguish malicious
transactions if the frontend is ever compromised

Severity

Description Many transactions within the Cian ecosystem make it extremely
difficult for the user to figure out what they are executing on their
wallet. This introduces the risk that if a frontend is ever hacked, the
user might not know they are actually allowing the hacker to drain
their wallet.

Recommendation Consider very carefully safeguarding the frontend. Ideally the
system should be designed with transaction inspection in mind but
we understand this is difficult to accomplish.

Resolution

LOW SEVERITY

The client has indicated they will consider front-end security with
the utmost level of care. However, users should still be careful of
the transactions they make as there is no way to guarantee the
safety of a frontend.

ACKNOWLEDGED

Page of 19 106 Global Issues Paladin Blockchain Security

Issue #02 Gas optimizations

Severity

Description The contract contains multiple sections of code that could be
further optimized for gas efficiency. We’ve enumerated these in a
single issue in an effort to keep the report brief and readable.

Throughout the codebase, the memory type is used for external
functions and their variable type arguments. This uses unnecessary
gas as the parameter is needlessly copied into memory. If the
parameter is never changed, the client can keep the type as
calldata to save gas. On a low level, this causes the contract to
directly fetch the values from the calldata storage instead of
copying them over to memory first. As calldata storage is
immutable, the variables cannot be changed if they are marked as
calldata, which is why Solidity allows you to specify parameters as
memory.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

This is resolved in certain locations.

PARTIALLY RESOLVED

INFORMATIONAL

Page of 20 106 Global Issues Paladin Blockchain Security

Issue #03 Typographical errors

Severity

Description The contract contains a number of typographical errors which we
have consolidated below in a single issue in an effort to keep the
report size reasonable.

AdapterBase::94 (example)

function sweep(address[] memory tokens, address receiver)

Throughout the codebase, tokens and other contracts are almost
never cast to their correct type. This requires the developer to then
explicitly cast them to IERC20, IControllerLink, IAdapterManager…
The developer should consider always immediately specifying the
types as the correct types instead of using the generic “address”
type. Although this will not affect gas usage, it heavily simplifies the
codebase and furthermore indicates to third parties that the
developer has a good understanding of solidity best practice.

ControllerLib::67 (example)

address private CertifiedAddress;

proxyWallet::11 (example)

contract proxyWallet is TransparentUpgradeableProxy {

Next, the contract often deviates from the casing Solidity standard
practice. Contracts should always be capitalized while all variables
except for constants should start with a lowercase character.

pragma solidity >=0.8.0 <0.9.0;

This can be simplified to pragma solidity ^0.8.0 which restricts the
version to 0.8 compatible versions as well.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

Some of these errors have been resolved throughout the codebase.

PARTIALLY RESOLVED

Page of 21 106 Global Issues Paladin Blockchain Security

2.2	 	ProxyWallet

ProxyWallet is the proxy contract for a user's wallet. It will hold the user’s token
and important information related to the user’s activity. Each user has their own
proxyWallet. The implementation of the proxyWallet is the ControllerLib which
is also covered within this audit.

It should be noted that the ProxyWallet is the absolute centerpiece contract for
users. It represents their virtual wallet that owns all assets for the user. The user
should therefore be very careful with calling the three privileged functions:
changeAdmin, upgradeTo and upgradeToAndCall. As this contract is a proxy that
points to the ControllerLib, users should understand that all logic and issues
described in the ControllerLib section also effectively apply to this contract, as
the ControllerLib code is used to handle any call to the ProxyWallet.

2.2.1	 Privileged Functions

The following functions can be called by the owner of the contract:

• changeAdmin

• upgradeTo

• upgradeToAndCall

Page of 22 106 ProxyWallet Paladin Blockchain Security

2.2.2	 Issues & Recommendations

Issue #04 Proxy receive() function prevents ControllerLib receive()
from being called

Severity

Description The proxy implementation, the ControllerLib, has a receive()
function to receive gas tokens. However, as the proxy also has a
receive() function, this causes the ControllerLib receive() to
never be called.

Recommendation We understand the desire to have a proxy level receive() function
as implementation level receive() functions often use too much
gas to allow for .transfer() (used for example in
WAVAX.withdraw()) calls to work.

However, this does mean that the contract cannot execute fallback
logic when it receives AVAX (which is not that big of a deal) but more
importantly that the ControllerLib receive() function is
redundant. The client should therefore consider removing that
function from ControllerLib.

Resolution

LOW SEVERITY

The underlying ControllerLib receive() has been removed.

RESOLVED

Page of 23 106 ProxyWallet Paladin Blockchain Security

Issue #05 proxyAdmin can become outdated

Severity

Location Line 22

address private proxyAdmin;

Description As a proxy traditionally only exposes the admin() function to the
actual admin, the client has added a getProxyAdmin() function to
allow for the admin to be visible within the explorer.

However, if the admin is ever transferred, the proxyAdmin variable
would not be updated as it is just a local variable not linked to the
actual proxy admin logic.

Recommendation Consider removing the proxyAdmin logic and changing it to a
dynamic getProxyAdmin implementation:

function getProxyAdmin() external view returns (address) {

 return _getAdmin();

}

Resolution

INFORMATIONAL

The recommendation has been implemented.

RESOLVED

Page of 24 106 ProxyWallet Paladin Blockchain Security

2.3	 	ControllerLib

The ControllerLib represents the core contract of CIAN architecture, it is the
implementation of the user’s ProxyWallet which is their virtual wallet. The
ControllerLib therefore contains all core logic for the user and other system
components to manage the user's virtual wallet.

It allows for the user to force their virtual wallet to execute arbitrary logic through
either calls or delegatecalls. It also allows the user to approve various controllers to
execute logic on adapters for them. The controllers do this by calling CallProxy,
(called the “automation” in this contract) which is also covered within this audit.
CallProxy then validates the request and forwards it to the user's virtual wallet.

❗ Disclaimer: During the course of this audit, CertifiedAddress logic was

replaced with callback logic which allows an adapter to escalate to delegatecalling
code within the wallet’s context. subAccount logic was also added (with several
flaws) during the course of the audit. This logic and its flaws are not within the scope
of this audit, all though Paladin did try to guide the Cian team through several
critical flaws found in this logic, regardless of it being out of scope.

Page of 25 106 ControllerLib Paladin Blockchain Security

2.3.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• setAdapManager [owner]

• setAdvancedOption [owner]

• withdrawAssets [owner]

• approve [owner / CallProxy]

• approveTokens [owner / CallProxy]

• executeOnAdapter [owner / CallProxy]

• multiCall [owner / CallProxy]

• callDirectly [owner]

• callback [certified: set by owner / CallProxy]

• transferOwnership [owner]

• renounceOwnership [owner]

• InitAuth [auth]

• enable [auth]

• disable [auth]

Page of 26 106 ControllerLib Paladin Blockchain Security

2.3.2	 Issues & Recommendations

Issue #06 SELFDESTRUCT can potentially be executed on an uninitialized
implementation

Severity

Description Solidity has a special opcode to delete a contract from the
blockchain. It is commonly used to clean-up temporary contracts as
it gives a gas rebate. However, since the ControllerLib often
delegatecalls to other contracts, a malicious party could initialize
the implementation that is shared between all proxies and cause it
to self destruct.

Recommendation Consider initializing the implementation and burning ownership.
Next, consider adding an onlyProxy modifier to all functions which
execute delegatecalls:

address public immutable implementationAddress;

constructor () {

 implementationAddress = address(this);

}

modifier onlyProxy() {

 require(address(this) != implementationAddress, “!

proxy”);

 _;

}

This modifier uses a little trick as it executes code in the constructor
of the implementation, which is ignored at the proxy level. However,
since immutable variables are in fact directly stored in the on-chain
bytecode, the implementationAddress actually becomes available
at the proxy level and still references the implementation address.
By ensuring the current context (address(this)) does not equal the
implementation address, we effectively lock usage of functions with
this modifier to proxy calls exclusively.

Resolution RESOLVED

HIGH SEVERITY

Page of 27 106 ControllerLib Paladin Blockchain Security

Issue #07 _multiCall does not validate that the _certifiedAddress is
unset after the individual iterations are fulfilled allowing a malicious
operator to drain and even destroy user proxies

Severity

Description The contract allows the controllers to provide a certifiedAddress
which can execute arbitrary code if the adapter calls back to the
user proxy.

Not only does this allow for significant privilege escalation if the
operators are only trusted by the fact that the adapters are
restricted, right now the codebase also does not unset the certified
address.

If an operator is only trusted because the adapter is sufficiently
safeguarded, an operator can bypass this safety mechanism
completely by providing a malicious certified address contract.
Once they execute ForwardExecuteMultiCall with the malicious
contract, they can then at a later point in time execute callback to
steal all user funds or even selfdestruct the proxy.

It should be noted that even if the CertifiedAddress is always
unset, a malicious operator could do this if they somehow are able
to execute any code during the adapter execution.

Recommendation Consider whether the _certifiedAddress logic is strictly necessary.
We are not huge fans of it as it seems to needlessly complicate the
proxy. In case it is not strictly necessary, we recommend removing it
for now as it can always be re-introduced through a proxy upgrade
(which the client should of course be careful with as well).

In case the CertifiedAddress is really necessary, the client will
need to treat it with a lot more care as it is a large security
vulnerability. These addresses should be carefully validated and
always unset after a multicall is finished.

Resolution

CertifiedAddresses have been replaced with a new type of logic.
This new type of logic does allow for privilege escalation from call
adapters to delegatecalling anything. users should therefore
carefully acknowledge this privilege escalation.

RESOLVED

HIGH SEVERITY

Page of 28 106 ControllerLib Paladin Blockchain Security

Issue #08 Privilege escalation risk: onFlashLoan multicall callback is a full
privilege escalation and allows governance to potentially drain all
wallets

Severity

Description The _multiCall call within the onFlashLoan function allows for
complete privilege escalation. Any operator that can execute
flashloans can therefore drain the contract.

Secondly, and the reason why this vector is marked as high severity,
the onFlashLoan function can be called directly by any contract that
is whitelisted by governance. Using the vector above, the
governance can therefore whitelist a malicious contract and drain all
of its users’ wallets. The user approval flow which is intended to
occur can therefore be completely circumvented through this
avenue.

Recommendation Consider whether the onFlashLoan hook is strictly necessary. We
recommend extracting flashloan logic into helper contracts
managed by adapters and to keep this logic out of the core.

Resolution

The governance risk is no longer present as the user now needs to
explicitly approve the flashloan provider. Each user starts by
approving the default flashloan provider.

PARTIALLY RESOLVED

HIGH SEVERITY

Page of 29 106 ControllerLib Paladin Blockchain Security

Issue #09 Validation on withdrawAssetsToAccount is almost completely
useless

Severity

Description The withdrawAssetsToAccount function is supposed to validate
that the destination of the withdrawal is another user-owned proxy
wallet. However, the checks to validate this are extremely
insufficient.

The code presently compares the codehashes of both contracts (the
origin and destination) to be equal in an attempt to validate that the
destination is in fact a wallet. Then it checks that the wallet proxy
owner is in fact the current owner.

What the developer failed to realize is that the code of both the
contracts is in fact just the proxy bytecode, hence it does not say
anything about the implementation. The implementation of the
receiver could therefore be a terribly malicious contract that
exposes a fake owner() function indicating it is owned by the
current owner.

Recommendation Consider keeping a registry in the WalletFactory and simply
validating that the _account parameter was deployed by the current
owner. It should be reiterated that one cannot rely on the owner of
the _account as a malicious user can upgrade their proxy to return
a fake owner, even if it was deployed by the WalletFactory.

The main valid solution is to only allow transferring to wallets you
are the “creator” of.

It should be noted that such a registry actually exists in the
ControllerLink contract, which could be used for this purpose.

Resolution

The function has been removed.

RESOLVED

MEDIUM SEVERITY

Page of 30 106 ControllerLib Paladin Blockchain Security

Issue #10 Funds could become permanently lost if a CertifiedAddress or
adapter ever contains the SELFDESTRUCT opcode as it would delete
the proxy

Severity

Description Solidity has a special opcode to delete a contract from the
blockchain. It is commonly used to clean-up temporary contracts as
it gives a gas rebate. However, since the ControllerLib often
delegatecalls to other contracts, it could accidentally delegatecall
to a contract with a SELFDESTRUCT opcode.

Of course, all contracts that are delegatecalled to should be
validated, audited and well-tested. In theory there should never be
a scenario where the proxy self-destructs. However, since there is a
way to actually recover the proxy if this ever were to happen, we
have included this as an explicit issue.

Recommendation Consider using deterministic deployment in the
upgradableWalletCreate function within the WalletFactory. This
can be done with almost minimal change:

WalletFactory::98

bytes32 salt = keccak256(abi.encode(msg.sender,

walletName));

proxyWallet newAccount = new proxyWallet{salt: salt}(logic,

admin, data);

If the wallet is ever deleted and the user is allowed to call
createAccount again with the same walletName, it would deploy
the same proxy to the same address. In other words, if the proxy
wallet is ever selfdestructed by accident, this logic would allow you
to recover it.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 31 106 ControllerLib Paladin Blockchain Security

Issue #11 ControllerLib contains unnecessary logic which makes it less
generic than it could be

Severity

Description The ControllerLib controls various specific functions that could be
provided as adapters or be called directly by the user:

- withdrawAsset

- withdrawAssets

- withdrawAssetsToAccount

- approve

- approveTokens

These functions are limited because if the user wishes to approve an
ERC-721 or ERC-1155, they would still need to resort to the
traditional generic way of calling them. The only merit we see in
having specific functions for these is that they reduce phishing risk,
but this merit might not outweigh the downside of these functions
bloating the absolutely most core component of the codebase.

Secondly, the ControllerLib contains various specific callback
logic which seems highly restrictive:

- callback function

- onFlashLoan function

These are restricted to specific callback types. For example,
Uniswap flashloan callbacks are not supported (so are many others).

Usually, a helper contract is used to execute the callback logic. This
way, the logic does not need to occur in the proxy itself (this is how
this problem is generally solved).

However, if the developer prefers to have a generic proxy callback
functionality, the cleanest way to do it would be something similar
to the following:

LOW SEVERITY

Page of 32 106 ControllerLib Paladin Blockchain Security

address public currentAdapter;

function delegatecallonAdapter(…) internal {

 currentAdapter = adapter;

 adapter.delegatecall(…);

 …;

 currentAdapter = address(0);

}

fallback() external payable {

 if (currentAdapter != address(0)) {

 currentAdapter.delegatecall(…);

 }

}

This would of course need to be extremely carefully considered as
there are a lot of security perspectives to think about (what if a
malicious party can execute your fallback while an adapter is set…).
The larger question is: Should callback/onFlashLoan occur at all
within the proxy if the generic approach is not used. Perhaps at this
point it is cleaner and simpler to use the traditional helper contract
approach.

Recommendation Consider removing this logic in favor of having it be executed at the
adapter level.

Resolution ACKNOWLEDGED

Page of 33 106 ControllerLib Paladin Blockchain Security

Issue #12 adapManager, advancedOptionEnable and CertifiedAddress
are private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variables as public.

Resolution

LOW SEVERITY

RESOLVED

Issue #13 callBytes of _callOnAdapter unnecessarily contains costETH

Severity

Location Line 95

costETH := mload(add(add(_callBytes, 32), 32))

Description The contract unnecessarily encodes the costETH in the callBytes,
which requires it to do a low-level decoding of this parameter.

As the costETH is actually never used by the adapter manager or
adapter itself, it is not strictly relevant to the callBytes.

Recommendation Consider simply providing costEth as a parameter to multiCall
and executeOnAdapter. It should be noted that msg.value kind of
becomes meaningless in multiCall and the client should be careful
with relying on it within that function.

Resolution

LOW SEVERITY

RESOLVED

Page of 34 106 ControllerLib Paladin Blockchain Security

Issue #14 onFlashLoan does not validate _multiCall parameter lengths

Severity

Description The onFlashLoan function does not validate the _multiCall
parameter lengths to be equal. This is inconsistent with how the
multicall is called with validated parameters in the callProxy.

Recommendation Consider validating that the _multiCall parameters are equal.

Resolution RESOLVED

LOW SEVERITY

Issue #15 Unused import: Record and ProxyAdmin

Severity

Location Line 8

import “@openzeppelin/contracts/proxy/transparent/

ProxyAdmin.sol";

Description The Record contract is inherited but the isAuth method is never
used as the contract uses the ControllerLink contract to store
users.

Files that are imported in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

Recommendation Consider removing the import to keep the contract short and
simple.

Resolution RESOLVED

INFORMATIONAL

Page of 35 106 ControllerLib Paladin Blockchain Security

Issue #16 Unused event: ChangeAutomation

Severity

Description Events which are defined in a contract but remain unused could
confuse third-party auditors. They also increase the contract length
unnecessarily.

Recommendation Consider removing the event to keep the contract short and simple.

Resolution RESOLVED

INFORMATIONAL

Issue #17 Lack of events for setCertified, setAdapManager,
setAdvancedOption and other various common functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

All other commonly called functions should also emit events, such
as multicall, executeOnAdapter, withdrawAsset, etc.

Recommendation Add events for the functions.

Resolution

INFORMATIONAL

RESOLVED

Page of 36 106 ControllerLib Paladin Blockchain Security

Issue #18 Typographical errors

Severity

Description The contract contains a number of typographical errors which we
have consolidated below in a single issue in an effort to keep the
report size reasonable.

L50

modifier onlyPermit()

The onlyPermit modifier is in fact onlyAutomationOrOwner.

L67

address private CertifiedAddress

Variables should start with a lowercase letter.

L95

costETH := mload(add(add(_callBytes, 32), 32))

Consider doing add(_callBytes, 64) to save some gas.

L185

function _tranferAsset(

The contract uses tranfer instead of transfer in various function
names.

Finally, automation would be more adequately called callProxy (or
CallProxy should be called ProxyAutomation). It took a few
minutes during our first architectural meeting to figure out that
CallProxy was actually the automation address.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 37 106 ControllerLib Paladin Blockchain Security

2.4	 	WalletFactory

WalletFactory creates the users' proxy wallets. These wallets are “virtual users”
managed by the user. Essentially they are identical to a regular wallet controlled by
the user, but they can be controlled programmatically by other adapters as well.
This means that the user could for example give approval to a secondary system to
execute a limit order for them once the price of AVAX/USDC dips below a certain
threshold on Trader Joe.

When the user calls createAccount, the contract will create a new ProxyWallet
and a ProxyAdmin contract. The ProxyWallet represents the user’s virtual wallet
while the ProxyAdmin is a contract which the user can use to upgrade the proxy to a
new implementation if they ever want to.

The wallet created needs to have the same bytecode as the one set by admins.

2.4.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• setTrustLogic [sub-account section added post-audit]

• renounceOwnership

• transferOwnership 

Page of 38 106 WalletFactory Paladin Blockchain Security

2.4.2	 Issues & Recommendations

Issue #19 Phishing risk: Malicious admins can be used

Severity

Location L34

mapping(address => address[]) public userProxyAdmin;

Description Consider only allowing the user to recycle an admin to avoid
phishing risk. Right now there is no code validation done on the
admin contract address that is provided by the user and will be
allowed to upgrade their virtual wallet.

To do so, consider using an enumerableSet instead of an array of
addresses to be able to check that the provided admin was created
by the user.

L95

address admin,

A malicious front end could provide a malicious admin.

Although an owner() check is done, this is insufficient given that a
malicious contract could misrepresent this.

In theory, the _data parameter in createAccount could also be
maliciously changed as a phishing vector. We however have no
clean recommendation to resolve this vector so the issue will still be
resolved regardless of this being addressed.

Recommendation Consider using an EnumerableSet and checking that the provided
admin was created by the user. By using an EnumerableSet instead
of an array, the client can check in O(1) that the admin address was
in fact created by the contract for that user at some point in the
past. Therefore, the contract can enforce that this parameter solely
uses recycled admin contracts.

Resolution

Only wallet admins that match the bytecode of the trusted admin
contract can be provided.

RESOLVED

MEDIUM SEVERITY

Page of 39 106 WalletFactory Paladin Blockchain Security

Issue #20 userDatabase and timelock are private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variables as public.

Resolution

LOW SEVERITY

RESOLVED

Issue #21 userProxyAdmin may be outdated and may have a shorter length
to userAccount

Severity

Location L83

userProxyAdmin[msg.sender].push(newProxyAdminAddr);

Description userProxyAdmin is not updated when an admin is recycled. This
means that the userProxyAdmin array might have a different length
to the userAccount array.

Additionally, proxyAdmin can still be changed after deployment so
this array may be outdated if the ownership is transferred.

Recommendation Consider adding the proxyAdmin to the array even if it is reused
unless this is explicitly desired. Also, an enumerableSet would be
more secure against phishing attacks as discussed in a previous
issue (it should be noted that once an EnumerableSet is used, this
recommendation cannot be implemented).

The transferred owner issue could be fixed by dynamically
generating the userProxyAdmin array by looping over all user
proxies, however, this might cause some gas issues.

Resolution

This has been removed completely.

RESOLVED

INFORMATIONAL

Page of 40 106 WalletFactory Paladin Blockchain Security

Issue #22 Unused Ownable inheritance

Severity

Location Line 33

contract WalletFactory is Ownable, Basic

Description Even though the Ownable contract is inherited, the onlyOwner
modifier is never used. This also increases the deployment gas cost
and the contract length unnecessarily.

Recommendation Consider removing the inheritance to keep the contract short and
simple.

Resolution

INFORMATIONAL

The ownable dependency has been removed completely.

RESOLVED

Issue #23 Lack of events for setCodeHash and createAccount

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the functions.

Resolution RESOLVED

INFORMATIONAL

Page of 41 106 WalletFactory Paladin Blockchain Security

Issue #24 Typographical error

Severity

Location L48

codeHash := extcodehash(_trustLogic)

Description Consider using the getCodeHash function instead.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

The logic has been removed.

RESOLVED

Issue #25 UI functions getUserProxyAdmin and getUserAccount can run out
of gas

Severity

Location Lines 117, 125

function getUserProxyAdmin(address owner)

function getUserAccount(address owner)

Description The contract contains functionality that can revert due to the nature
of their implementation nature. As the state of the contract
expands, this functionality might become so expensive that the gas
cost does not fit in a single block and would become impossible to
call. As RPCs also have various rate limiting methods, the
functionality might become inaccessible even sooner.

Recommendation Consider adding a length function to those arrays so they can be
called one by one if those functions ever run out of gas.

Resolution

INFORMATIONAL

The functions have been removed.

RESOLVED

Page of 42 106 WalletFactory Paladin Blockchain Security

2.5	 	CallProxy/CallProxyLib

CallProxy is an upgradeable contract that uses the CallProxyLib as its
implementation. It is the core authorization contract used by all wallets. Operators
need to go through CallProxy if they wish to execute automation tasks on a user
wallet. CallProxy will then call ERC2612Verifier to check if the operator has the
required permission to execute the specific action for the user.

2.5.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• setFlashLoanWhiteList [TimeLock]

• transferOwnership [owner]

• renounceOwnership [owner]

• setAccountVerifier [owner of the proxyWallet] 

Page of 43 106 CallProxy/CallProxyLib Paladin Blockchain Security

2.5.2	 Issues & Recommendations

Issue #26 Governance Issue: The implementation is a proxy

Severity

Description A malicious governance could change the implementation to steal
users’ tokens. Additionally, a malicious governance could set a bad
publicVerifier to bypass the isTxPermitted check and steal
users' token.

Recommendation Consider not making the ControllerLib a proxy as adding the
burden on the user to potentially re-approve a contract is definitely
desired over adding governance risk.

The timelock should however become transferable at this point, as
it cannot be changed through an upgrade.

Resolution

The contract is no longer deployed as a proxy. Timelock is still not
transferable.

RESOLVED

HIGH SEVERITY

Issue #27 The initialize function does not call the initialize function
safely

Severity

Description The contract calls the unchained initializer and calling all the parent
initializer by hands — this is not recommended as one could be
forgotten.

Initializer functions are not linearized by the compiler like
constructors. Because of this, each __{ContractName}_init
function embeds the linearized calls to all parent initializers.

Recommendation Consider using the init function that embeds the parent initializers.

Resolution

LOW SEVERITY

The contract is no longer a proxy.

RESOLVED

Page of 44 106 CallProxy/CallProxyLib Paladin Blockchain Security

Issue #28 Adapter load-in allows for loading in a 32 bytes value while an
address is just 20 bytes

Severity

Location Line 90

adapter := mload(add(add(callBytes, 12), 20))

Description The adapter load-in loads in a whole word in the adapter address
slot. This would allow a malicious party to hide bits into the last 12
bytes of the second word of the callBytes. This gives a malicious
user excessive control over the memory as they are traditionally not
allowed to do this (Solidity reverts if this is attempted with high level
abi.decode code).

This issue is marked as low severity as we could not find a way to
exploit the contract with those last 12 bytes, however, we still highly
recommend rectifying it.

Recommendation Consider using high level abi.decode code instead. Within a system
where security is as crucial as it is here, our opinion is that the team
should not over optimize for gas with clever solutions.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 45 106 CallProxy/CallProxyLib Paladin Blockchain Security

Issue #29 Unused inheritance: OwnableUpgradeable.sol

Severity

Location L12

contract CallProxyLib is Initializable, OwnableUpgradeable,

Basic

Description Files that are imported in a contract but not used within the
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

Recommendation Consider removing the inheritance to keep the contract short and
simple.

Resolution

INFORMATIONAL

RESOLVED

Issue #30 Unused event: CallForwardSignle

Severity

Description Events which are defined in a contract but remain unused could
confuse third-party auditors. They also increase the contract length
unnecessarily. In addition, the event is also is misspelled.

Recommendation Consider removing the event to keep the contract short and simple.

Resolution

INFORMATIONAL

This event has been removed.

RESOLVED

Page of 46 106 CallProxy/CallProxyLib Paladin Blockchain Security

Issue #31 Lack of events for setPublicVerifier, setAccountVerifier and
setFlashLoanWhiteList

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the above functions.

Resolution

INFORMATIONAL

RESOLVED

Page of 47 106 CallProxy/CallProxyLib Paladin Blockchain Security

Issue #32 Typographical errors

Severity

Description The contract contains a number of typographical errors which we
have consolidated below in a single issue in an effort to keep the
report size reasonable.

L8-9

import "../controller/ControllerLib.sol";

import "../verifier/ERC2612Verifier.sol";

Importing an interface here instead of the whole implementation
would have been sufficient. This would reduce the verified code size
significantly in the explorer.

L48

address owner_,

This parameter can be removed as it must be msg.sender.

L69

function _excuteVerifyBasic(

L84

function _excuteVerifyAdapter(address account, bytes memory

callBytes)

The functions should be named execute instead of excute.

L84

function _excuteVerifyAdapter(address account, bytes memory

callBytes)

This function is inconsistent with _excuteVerifyBasic as
excuteVerifyBasic contains an operator parameter. Consider
being consistent and removing the parameter from
_excuteVerifyBasic.

INFORMATIONAL

Page of 48 106 CallProxy/CallProxyLib Paladin Blockchain Security

L90

adapter := mload(add(add(callBytes, 12), 20))

Consider doing mload(add(callBytes, 32)).

L184-190

function doFlashLoan(

 address loanProvider,

 address account_,

 address token,

 uint256 amount,

 bytes calldata payload

) public {

doFlashLoan can be made external, although we believe it should
ideally be removed.

Recommendation Consider fixing the typographical errors.

Resolution

Most of the errors have been fixed.

RESOLVED

Issue #33 multicall functions lack non-zero checks

Severity

Description Users can execute a multicall with zero length parameters on user
accounts. This might not be desired as it could put off some users.

Recommendation Consider validating that the length of the parameters are greater
than zero.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 49 106 CallProxy/CallProxyLib Paladin Blockchain Security

Issue #34 permit can be frontrun and cause denial of service

Severity

Description If permit is executed twice, the second execution will be reverted. It
is thus in theory possible for a bot to pick up permit transactions in
the mempool and execute them before a contract can.

The implications of this issue is that a bad actor could prevent a
user from using the permit flow. It is a denial-of-service attack
which is present in most permit contracts.

Recommendation Consider this if the permit flow ever stops working. If the client
wishes to deal with it explicitly, they can decide to ignore the permit
signature if the permission was already granted.

Resolution

The client will consider this.

RESOLVED

INFORMATIONAL

Page of 50 106 CallProxy/CallProxyLib Paladin Blockchain Security

2.6	 	ERC2612Verifier

ERC2612Verifier will allow users to specify if they approve basic operations and /
or specific adapters. Those approvals are represented using ids. If a user wants to
allow a specific id, they need to call approve with 2^id as the approvalType. A user
can also sign a message to approve an adapter without ever calling the function
themselves.

Currently the basic operations are:

- (2^0): approve a token.

- (2^1): allow flashloans on BankerJoe.

The id of the different adapters will be chosen by the team.

Note that any approval will overwrite all previous approvals — this means that the
user must be extremely careful with their transaction bytes as it will be
exceptionally difficult to figure out which adapter they are approving.

2.6.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• approve [only owner of that account]

• revoke [only owner of that account] 

Page of 51 106 ERC2612Verifier Paladin Blockchain Security

2.6.2	 Issues & Recommendations

Issue #35 The current implementation limit the number of adapter to 240

Severity

Description The first 16 bits are reserved for basic operations while the last 240
bits will be allocated to the adapters. Because of this design, it is
not possible to add more than 240 adapters.

Recommendation Consider using an enumerableSet for approval. If the goal was to be
able to approve more than one adapter in one transaction, consider
using a for loop as the increase in gas cost will not be too noticeable
as the approval lasts in perpetuity.

To combat phishing, it might be especially valuable to explicitly
validate the adapter addresses instead of using the current gas
optimized solution. Validating the approval transaction is terribly
difficult right now for a user.

Resolution

The client has indicated they will fix this nearer to the limit.

ACKNOWLEDGED

LOW SEVERITY

Issue #36 The OperatorUpdate event lacks the approval type variable

Severity

Description The OperatorUpdate event lacks important information: the
approval type variable. Additionally, there is no way to differentiate
them as the approvalType is not a parameter of this event since it
used as the event for approval and revocation.

Recommendation Consider adding the approvalType to the event.

Resolution RESOLVED

INFORMATIONAL

Page of 52 106 ERC2612Verifier Paladin Blockchain Security

Issue #37 DOMAIN_SEPARATOR can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly immutable.

Resolution RESOLVED

INFORMATIONAL

Issue #38 approvals, approve and revoke can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

Recommendation Consider marking the functions mentioned above as external.

Resolution

INFORMATIONAL

RESOLVED

Page of 53 106 ERC2612Verifier Paladin Blockchain Security

2.7	 	ControllerLink

ControllerLink is a helper contract that will behave like a user database. Every
time a new ProxyWallet is created, it is added to the ControllerLink mappings.

2.7.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• addAuth [factory]

• removeAuth [owner]

• transferOwnership [owner]

• renounceOwnership [owner]

 

Page of 54 106 ControllerLink Paladin Blockchain Security

2.7.2	 Issues & Recommendations

Issue #39 The removeAuth function can be called multiple time with the same
values

Severity

Description The removeAuth only checks that the accountId was set, but fails to
reset that value back to 0. This allows users to call removeAuth
multiple times with the same account, artificially reducing the total
count. This may prevent other users to be able to call removeAuth
as the function may revert because the count would be lower than
the total amount of wallets.

A malicious party will simply call removeAuth as many times as
there are accounts to prevent any further removal of accounts due
to the count subtraction underflow reverting.

Recommendation Consider resetting the accountID[_account] value to 0, so users
will not be able to call removeAuth multiple times with an already
deleted account.

Resolution

MEDIUM SEVERITY

RESOLVED

Issue #40 trustFactory and timeLock are private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variables as public.

Resolution

LOW SEVERITY

RESOLVED

Page of 55 106 ControllerLink Paladin Blockchain Security

Issue #41 Gas optimizations

Severity

Description The contract contains multiple sections of code that could be
further optimized for gas efficiency. We have consolidated these
issues into a single issue in an effort to keep the report brief and
readable.

L17

address private timeLock;

timeLock can be marked as immutable to save gas whenever it is
used.

L76-79

accountID[_account] = accounts; // @audit gas store values /

use param values

accountAddr[accounts] = _account;

addAccount(_owner, accountID[_account]);

addUser(_owner, accountID[_account]);

Consider caching the accountID[_account] value to reduce gas
cost.

L104

function addUser(address _owner, uint64 _account) internal

L126

function removeUser(address _owner, uint64 _account)

internal

The accountLink and accountList behave like a linked list but the
account added is always new as it is a counter that only increases.
Using such a storage unnecessarily increases the gas cost while
making it harder for users to access the important values.

Consider using a simple mapping of uint256 to the user to make
the contract simpler and shorter. This will furthermore reduce gas
cost.

INFORMATIONAL

Page of 56 106 ControllerLink Paladin Blockchain Security

L137

function add(uint64 x, uint64 y) internal pure returns

(uint64 z)

L141

function sub(uint64 x, uint64 y) internal pure returns

(uint64 z)

Checking for overflow and underflow is unnecessary when using
Solidity >= v0.8 as it is now natively checked. Consider using
normal math instead of SafeMath.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

add and sub have been removed.

PARTIALLY RESOLVED

Page of 57 106 ControllerLink Paladin Blockchain Security

Issue #42 Typographical and minor errors

Severity

Description The contract contains a number of typographical or minor errors
which we have consolidated below in a single issue in an effort to
keep the report size reasonable.

L5, 8

import "@openzeppelin/contracts/access/Ownable.sol";

contract ControllerLink is Ownable {

Ownable is unused throughout the contract.

L48

function initialize(address _trustFactory) external

onlyTimeLock {

This function would be more adequately named setTrustFactory
as it is not just an initializer.

Recommendation Consider fixing the typographical and minor errors.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 58 106 ControllerLink Paladin Blockchain Security

2.8	 	Record

Record is a simple RBAC contract that allows various addresses to be marked as
“authorized”. Any authorized account can add and remove other authorized
accounts.

2.8.1	 Privileged Functions

The following functions can be called by the owner of the contract:

• enable

• disable 

Page of 59 106 Record Paladin Blockchain Security

2.8.2	 Issues & Recommendations

Issue #43 Any authorized address can become the only authorized address

Severity

Description Any authorized address can disable any authorized address,
including themselves. A malicious user that is authorized can
become the only authorized address by disabling the other ones.

Recommendation Consider only allowing an owner to enable and disable
authorization. Ideally one should resort to OpenZeppelin’s RBAC
solutions.

Resolution

MEDIUM SEVERITY

The client has removed this contract.

RESOLVED

Issue #44 Contract lacks an easy way for users to figure out the list of
authorized addresses through explorer contract inspection

Severity

Description The Record contract keeps track of a set of authorized wallets.
However, there is no way for users to easily see the full list of
authorized wallets. If such wallets ever have important functionality
that could affect user funds, this might frustrate investors.

Currently the only way to figure out who is authorized is to go back
over all transactions of all authorized addresses, which is terribly
difficult to organize.

Recommendation Consider using OpenZeppelin’s enumerableSet to allow the users to
iterate through the addresses they have authorized.

Resolution

The client has removed this contract.

RESOLVED

INFORMATIONAL

Page of 60 106 Record Paladin Blockchain Security

Issue #45 Lack of events for initAuth, enable and disable

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the above functions, a single event with an address
and boolean parameter would suffice for all three locations.

Resolution

INFORMATIONAL

The client has removed this contract.

RESOLVED

Page of 61 106 Record Paladin Blockchain Security

2.9	 	ProxyCallable

The ProxyCallable contract is a dependency used by the ControllerLib (the user
wallet) to store the address of the CallProxy which is used for operators to interact
with the wallet.

Page of 62 106 ProxyCallable Paladin Blockchain Security

2.9.1	 Issues & Recommendations

Issue #46 Typographical error

Severity

Location L9

event AutomationTransferred(

Description This event is in fact an AutomationInitialised event and can be
simplified as such. The previousAutomation value will always be
address(0) so it can be removed.

Recommendation Consider fixing the typographical error.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 63 106 ProxyCallable Paladin Blockchain Security

2.10	 	AdapterManager

AdapterManager is the main registry for all Cian adapters. An adapter is a smart
contract which can be used by Cian operators to execute functionality for users on
their wallets.

The manager can also be paused by various Cian-approved pause guardians. This
prevents calls from being executed by operators on user wallets and can be used as
an emergency safeguard if an adapter turns out to have a vulnerability.

2.10.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• execute [user proxies]

• registerAdapters [timelock]

• unregisterAdapters [timelock]

• setPauseWhiteList [timelock]

• setPause [suspend permissioned accounts & owner can pause, timelock can

unpause] 

Page of 64 106 AdapterManager Paladin Blockchain Security

2.10.2	 Issues & Recommendations

Issue #47 delegatecalls are still possible even if the AdapterManager is
paused

Severity

Description The ControllerLib presently does not check whether the
AdapterManager is paused, which still allows operators to execute
delegatecalls (and approval and flashloans) even when the
AdapterManager is paused. If ever an adapter has a vulnerability
that allows it to drain wallets, it might be insufficient to pause the
AdapterManager and there might be nothing the Cian team can do
to stop it.

Recommendation Consider checking whether the AdapterManager is paused on all
operator interactions.

Resolution

The paused state is presently checked in all delegatecall operations
but not all adapter manager operations (eg. normal calls).

PARTIALLY RESOLVED

MEDIUM SEVERITY

Issue #48 unregisterAdapters does not reset adaptersIndex

Severity

Description adaptersIndex is not reset during the unregisterAdapters
function. Approval will therefore appear to remain granted to
certain adapters.

Recommendation Consider setting adaptersIndex back to zero whenever an adapter
is unregistered.

Resolution RESOLVED

LOW SEVERITY

Page of 65 106 AdapterManager Paladin Blockchain Security

Issue #49 The registerAdapters function allows the addition of too many
adapters

Severity

Description The registerAdapters function currently allows the index of the
new adapter to be set to values greater than 256. Those adapters
will never be able to be called because of current implementation,
as any uint256 shifted by 256 bits or more will always return 0.

Recommendation Consider asserting that the index of the adapter is lower or equal to
255 or change the approval logic.

Resolution

LOW SEVERITY

RESOLVED

Issue #50 _paused and suspendPermissions are private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variables as public.

Resolution

LOW SEVERITY

RESOLVED

Page of 66 106 AdapterManager Paladin Blockchain Security

Issue #51 Non-transferrable timelock address might be limiting if the client
ever wants to move to a new governance structure

Severity

Description Presently the timelock ownership address is immutable. If the
governance ever wants to move to a different governance structure
this might complicate such a matter.

Recommendation Consider whether it is desired to allow the timelock to change the
timelock address.

Resolution

INFORMATIONAL

The client added a new TimelockCallable contract that allows for
a mutable timelock contract.

RESOLVED

Page of 67 106 AdapterManager Paladin Blockchain Security

Issue #52 Unused imports, functionality and typographical errors

Severity

Description L7

import "../utils/AddressArrayLib.sol";

L13

using AddressArrayLib for address[];

Files that are imported in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

The client likely included this at first and then moved to the better
suited EnumerableSet structure which is currently used. We
appreciate them not using this library as it is indeed not as ideal
compared to the much more suitable EnumerableSet.

L24-27

event AdapterDeregistered(

 address indexed adapter,

 string indexed identifier

);

This event is not used.

L133

require(adapterIsRegistered(_adapters[i]), "Adapter is not

exist");

The error message should be “Adapter does not exist”.

Recommendation Consider resolving the above issues to keep the contract short and
simple.

Resolution

INFORMATIONAL

RESOLVED

Page of 68 106 AdapterManager Paladin Blockchain Security

Issue #53 Gas usage: getRegisteredAdapters might run out of gas

Severity

Description getRegisteredAdapters increases in gas cost as more adapters are
registered. Eventually an RPC might reject executing it because the
gas cost is too expensive.

Recommendation Consider adding a length and index-specific getter function.

Resolution

The client has opted for an index-specific getter function.

RESOLVED

INFORMATIONAL

Issue #54 Lack of events for setPauseWhiteList

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution RESOLVED

INFORMATIONAL

Page of 69 106 AdapterManager Paladin Blockchain Security

Issue #55 setPauseWhiteList check can be simplified

Severity

Location L169-173

if (val == false) {

 require(suspendPermissions[partner], "No change.");

} else {

 require(!suspendPermissions[partner], "No change.");

}

Description This check can be simplified.

Recommendation Consider simplifying this check to:

require(suspendPermissions[partner] != val, “No change.”);

Resolution RESOLVED

INFORMATIONAL

Page of 70 106 AdapterManager Paladin Blockchain Security

2.11	 	AdapterBase

AdapterBase contract contains the core functionality for any adapter. All of the
adapters extend it.

Note that the privileged functions are present in all adapters but will not be
repeated from here on out.

2.11.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• sweep [timelock]

• transferOwnership [owner]

• renounceOwnership [owner]

• setTimelock [timelock] 

Page of 71 106 AdapterBase Paladin Blockchain Security

2.11.2	 Issues & Recommendations

Issue #56 Governance privilege: The timelock can potentially sweep wallets
through reentrancy during delegatecalls

Severity

Description AdapterBase contains a function sweep that allows the timelock to
take out any tokens in the adapter. However, if a delegatecall
would be made to sweep by the timelock on a user proxy, it would
allow the timelock to sweep funds from the user wallet

Recommendation Consider disabling delegatecalls to sweep by using a modifier
exactly opposite to onlyDelegation.

Resolution

INFORMATIONAL

sweep can no longer be called through delegation.

RESOLVED

Issue #57 ADAPTER_NAME is unaccessible during delegate calls

Severity

Description ADAPTER_NAME is only accessible through normal calls to the
contract, unlike the other variables like ADAPTER_ADDRESS which are
available during delegatecalls.

Recommendation Consider moving ADAPTER_NAME to an abstract pure function that
must be overridden by all adapters. This would allow the variable to
become accessible even during delegatecalls.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 72 106 AdapterBase Paladin Blockchain Security

Issue #58 Unused import: IWAVAX.sol

Severity

Location L9

import "../../interfaces/IWAVAX.sol";

Description Files that are imported in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

Recommendation Consider removing the import to keep the contract short and
simple.

Resolution

INFORMATIONAL

RESOLVED

Issue #59 Typographical errors

Severity

Description The contract contains a number of typographical errors which we
have consolidated below in a single issue in an effort to keep the
report size reasonable.

L33

require(ADAPTER_ADDRESS != address(this), "Only For

delegatecall.");

“For” should not be capitalized in this error.

L59

require(_token != address(0) && _token != avaxAddr);

This requirement lacks an explicit revert message.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

PARTIALLY RESOLVED

Page of 73 106 AdapterBase Paladin Blockchain Security

Issue #60 pullTokensIfNeeded might not pull in enough tokens for tokens
with a fee on transfer

Severity

Description pullTokensIfNeeded might not pull in enough tokens for tokens as
a fee on transfer as the contract would receive less tokens than
requested.

Recommendation Consider this behavior carefully. No changes need to be made as it’s
inherent to token pulling behavior. If tokens with a fee on transfer
ever needs to be supported, a before-after pattern should be
considered.

Resolution

INFORMATIONAL

The client has indicated that they will consider this carefully. The
likelihood of this function not pulling in sufficient tokens has even
increased after the audit, as the function no longer reverts if there
were insufficient tokens. We discussed this with the client and they
have indicated that this behavior is desired.

RESOLVED

Page of 74 106 AdapterBase Paladin Blockchain Security

2.12	 	WavaxGateway

WavaxGateway is a simple adapter that allows for the depositing and withdrawal of
WAVAX from and into AVAX.

It should be noted that withdrawing WAVAX straight into a proxy is generally a
disliked practice due to the fallback logic of a proxy costing potentially too much
gas for the gas-limited transfer to succeed. However, as the wallet proxy presently
has a receive() override, this should not cause a problem for now. Generally and
informationally speaking, a non-upgradeable helper contract is used to withdraw
WAVAX instead of the approach which is taken here.

The WavaxGateway is a delegationcall adapter.

Page of 75 106 WavaxGateway Paladin Blockchain Security

2.12.1	 Issues & Recommendations

Issue #61 Typographical error

Severity

Location L10

AdapterBase(_adapterManager, _timeLock, "WavxGateway")

Description The adapter’s name should be WavaxGateway.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

RESOLVED

Page of 76 106 WavaxGateway Paladin Blockchain Security

2.13	 	SAVAXAdapter

SAVAXAdapter is an adapter to stake into and unstake from Benqi’s liquid staking
SAVAX (Implementation) solution. SAVAXAdapter is a delegation adapter.

Page of 77 106 SAVAXAdapter Paladin Blockchain Security

2.13.1	 Issues & Recommendations

Issue #62 SAVAXAdapter lacks various functions

Severity

Description The SAVAXAdapter lacks functionality to retrieve requested unlocks
that are relocked. It also lacks functionality to redeem() and
retrieve relocked unlocks by index as might be required if the
looped versions consume too much gas.

Recommendation Consider adding the missing functions.

Resolution

LOW SEVERITY

The client has indicated the contract is not responsible for SAVAX
unwrapping and that users should simply take it out to unwrap it.
However, there are still redeem functions which means that the
functionality is still somewhat there. We are therefore marking the
issue as acknowledged.

ACKNOWLEDGED

Page of 78 106 SAVAXAdapter Paladin Blockchain Security

2.14	 	TraderJoeAdapter

TraderJoeAdapter is an adapter that allows users to use the TraderJoe DEX and
farms within their wallets. It allows for the swapping of tokens, adding of liquidity
and removing of liquidity. The CIAN team added a zap function to add liquidity
from one token to a pair, and it also implements a way to optimally add liquidity
when 2 tokens are provided in an unbalanced fashion.

TraderJoeAdapter is a delegation adapter for farming and a call adapter for swaps.

2.14.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• swapTokensForExactTokens [adapterManager]

• swapExactTokensForTokens [adapterManager]

• addLiquidity [adapterManager]

• removeLiquidity [adapterManager]

• addLiquidityAVAX [adapterManager]

• removeLiquidityAVAX [adapterManager]

• depositLpToken [only delegation]

• withdrawLpToken [only delegation]

• enter [only delegation]

• leave [only delegation]

• addLiquidityCustomized [adapterManager]

• addLiquidityFromOneToken [adapterManager]

Page of 79 106 TraderJoeAdapter Paladin Blockchain Security

2.14.2	 Issues & Recommendations

Issue #63 User can get sandwiched and suffer high slippage

Severity

Description The autoswap and the autoSwapFromOneToken internal functions do
not set a minimum amount of tokens to receive. Users may get
sandwiched and suffer high slippage.

Recommendation Consider adding the slippage values within the encodedData to
reduce the impact of a sandwich attack.

Resolution

The client will be using a 1inch adaptor, however, it should be noted
that this adaptor is not within the scope of this audit. Users should
still be aware that this function is vulnerable to high slippage.

RESOLVED

MEDIUM SEVERITY

Issue #64 The adapter does not allow users to call emergencyWithdraw

Severity

Description The adapter does not allow users to call emergencyWithdraw. This
should be added in case users ever need to call this during an
emergency situation.

Recommendation Consider adding a way to call the emergencyWithdraw function.

Resolution

LOW SEVERITY

A function for emergencyWithdraw has been added.

RESOLVED

Page of 80 106 TraderJoeAdapter Paladin Blockchain Security

Issue #65 JoeBar is now deprecated

Severity

Description The adapter allows users to enter and leave from JoeBar or xJOE.
This feature has now been deprecated as users no longer receive
incentives to stake their JOE tokens inside JoeBar.

These days, TraderJoe allows users to stake their JOE in 3 different
ways: rJoe, veJoe and sJoe.

Recommendation Consider removing the functions related to JoeBar. Consider
whether the new ways of staking JOE should be added. If so, it
might make sense to add them as separate adapters to keep
adapters short and modular.

Resolution

LOW SEVERITY

The JoeBar logic was removed.

RESOLVED

Page of 81 106 TraderJoeAdapter Paladin Blockchain Security

Issue #66 addLiquidityAVAX contains a seemingly redundant transfer

Severity

Location L230-238

if (addInfo.amountTokenDesired > _amountToken) {

 IERC20(addInfo.tokenAddr).safeTransfer(

 account,

 addInfo.amountTokenDesired - _amountToken

);

}

if (msg.value == _amountAVAX) {

 IERC20 token = IERC20(addInfo.tokenAddr);

 token.safeTransfer(account,

token.balanceOf(address(this)));

Description The second transfer seems to be redundant with the first.

Recommendation Consider whether there is supposed to be any token dust after the
first transfer executes. If so, consider whether either of the transfers
can be removed.

Resolution

The redundant transfer has been removed.

RESOLVED

LOW SEVERITY

Page of 82 106 TraderJoeAdapter Paladin Blockchain Security

Issue #67 depositLpToken and withdrawLpToken can deposit into and
withdraw from Masterchefs other than Trader Joe

Severity

Description depositLpToken and withdrawLpToken can deposit tokens into and
withdraw tokens from and into any Masterchef — this might be
undesirable in case operators are not fully trusted. It should be
noted that this contract in general should not allow untrusted
operators on in any case.

Recommendation Consider hardcoding the masterchefAddr as a variable.

Resolution

LOW SEVERITY

There is now a list of trusted Masterchefs that the user can use. It
should be noted that as this check is also done during a withdraw —
if the list was to be updated and a Masterchef was removed, users
that deposited to that specific contract may not be able to withdraw
anymore.

RESOLVED

Issue #68 The JTokenSnapshot structure and IJToken import are unused

Severity

Description The JTokenSnapshot structure and IJToken import are unused
throughout the contract.

Recommendation Consider removing the unused structure and import to keep the
contract short and simple.

Resolution RESOLVED

INFORMATIONAL

Page of 83 106 TraderJoeAdapter Paladin Blockchain Security

Issue #69 router can be made constant

Severity

Description Variables that are never modified can be indicated as such with the
constant keyword. This is considered best practice since it makes
the code more accessible for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly constant.

Resolution RESOLVED

INFORMATIONAL

Issue #70 SafeMath is unnecessary starting from Solidity version 0.8

Severity

Description Throughout the contract, the developers use SafeMath to protect
the contracts against integer overflow. However, starting from
Solidity version 0.8, such protections are baked into the standard
math operators of Solidity. Therefore, it is no longer necessary to
use SafeMath in the current version of the codebase. Using
SafeMath in this version will slightly increase gas usage.

Recommendation Consider removing the SafeMath dependency and reverting to
standard math operators throughout all contracts starting from
version 0.8.

Resolution

INFORMATIONAL

RESOLVED

Page of 84 106 TraderJoeAdapter Paladin Blockchain Security

Issue #71 Gas optimizations

Severity

Description We have consolidated the sections of code that could be further
optimized for gas efficiency into a single issue in an effort to keep
the report brief and readable.

- Throughout this adapter, the deadline of the swaps are set to be
block.timestamp + TIME_INTERVAL. This is unnecessary as the
swaps will be done within the same block.timestamp.

- Consider setting the deadline to block.timestamp (or
type(uint256).max for even higher gas efficiency) or, even
better, consider whether the deadline should be added to the
encodedData.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 85 106 TraderJoeAdapter Paladin Blockchain Security

2.15	 	FeeBoxAVAX, FeeBoxSAVAX and
FeeBoxToken

The FeeBox contracts are responsible for taking fees from the users' wallets to
subsidize gas and management costs for the operators that execute automation
jobs for them.

2.15.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• initialize [timelock]

• setAdapterManager [timelock, added after audit]

• paymentCheck [balanceController]

• setBalance [balanceController, added after audit]

Page of 86 106 FeeBoxAVAX, FeeBoxSAVAX, FeeBoxToken Paladin Blockchain Security

2.15.2	 Issues & Recommendations

Issue #72 SAVAX redemptions might eventually relock or run out of gas

Severity

Location FeeBoxSAVAX::98

ISAVAX(sAVAX).redeem();

Description The redeem function of Benqi’s sAVAX does not use constant gas.
This means that as unlock requests accumulate, the gas usage of
redeem increases, and this might cause redemptions to eventually
run out of gas.

More severely, if an unlock request is not redeemed in time, it will
relock. When this happens, the user needs to explicitly call a
method to receive sAVAX shares for those relocked tokens.
However, the contract presently does not allow the calling of that
method which means all the relocked AVAX tokens will be
permanently lost under the current design.

Recommendation Consider removing the FeeBoxSAVAX contract in favor of a simple
ERC20 FeeBox (essentially FeeBoxAVAX for ERC20 tokens) that
transfers the sAVAX tokens as is to the feeReceiver. There is no
advantage to handling the redemption at the protocol level like this
as we are generally fans of the “less is more” principle.

Resolution

HIGH SEVERITY

The client now transfers the sAVAX directly to the fee receiver.

RESOLVED

Page of 87 106 FeeBoxAVAX, FeeBoxSAVAX, FeeBoxToken Paladin Blockchain Security

Issue #73 Governance privilege: balanceController can take funds from
users’ accounts

Severity

Description The balanceController can freely take funds from users' accounts
if they ever approve a feebox. We are unsure why this flow is
desired or if users will give infinite approval to feeboxes. If they give
infinite approval to feeboxes, this is a serious governance risk.

Recommendation Consider whether it is the user that should actually sign the
approval.

Resolution

MEDIUM SEVERITY

A tx.origin check is now done which validates that any transaction
to deposit originated from the user wallet owner.

RESOLVED

Issue #74 Approval flow does not contain necessary safeguards

Severity

Description The approval flow does not use OpenZeppelin’s ECDSA library,
instead, it uses a low level ecrecover call to validate the signature.
As ecrecover lacks various safeguards, this could be risky. For
example, while initialize is not called and balanceController is
still address(0), any signature can be faked as ecrecover simply
returns address(0) when it fails to recover a signature due to bad
inputs.

Recommendation Consider moving to ECDSA by OpenZeppelin.

Resolution

MEDIUM SEVERITY

The contracts now use the ECDSA function.

RESOLVED

Page of 88 106 FeeBoxAVAX, FeeBoxSAVAX, FeeBoxToken Paladin Blockchain Security

Issue #75 balanceController and feeReceiver are private

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking the variables as public.

Resolution

This has been fixed within all contracts.

RESOLVED

LOW SEVERITY

Issue #76 Lack of events for initialize

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for the function.

Resolution RESOLVED

INFORMATIONAL

Page of 89 106 FeeBoxAVAX, FeeBoxSAVAX, FeeBoxToken Paladin Blockchain Security

Issue #77 Typographical and minor errors

Severity

Description The contract contains a number of typographical and minor errors
which we have consolidated below into a single issue in an effort to
keep the report size reasonable.

mapping(address => uint256) public tokenBlance;

The various balance mappings are mispelled as “blance”.

function initialize(

This function is not an initializer as it can be called multiple times.
Consider renaming it.

 

FeeBoxAVAX::88

require(wavaxBlance[account] >= consumedAmount);

This requirement lacks an explicit return value.

FeeBoxSAVAX::74

address public sAVAX =

0x2b2C81e08f1Af8835a78Bb2A90AE924ACE0eA4bE;

sAVAX can be marked as constant.

Recommendation Consider fixing the errors above.

Resolution

INFORMATIONAL

RESOLVED

Page of 90 106 FeeBoxAVAX, FeeBoxSAVAX, FeeBoxToken Paladin Blockchain Security

2.16	 	VerifierBasic

VerifierBasic is used by the various FeeBoxes to validate signatures.

Page of 91 106 VerifierBasic Paladin Blockchain Security

2.16.1	 Issues & Recommendations

Issue #78 recoverSigner allows anyone to fake signatures for the zero
address

Severity

Location Line 35

return ecrecover(_ethSignedMessageHash, v, r, s);

Description The VerifierBasic contract uses a low level ecrecover call to
validate a signature. This call is known to be vulnerable to various
attacks like the fact that it returns 0 if any of the parameters are
wrong. This allows anyone to fake signatures for the zero address
which might be abused in contracts that inherit this Verifier.

Recommendation Consider removing this contract and moving to OpenZeppelin’s
ECDSA.sol.

Resolution

HIGH SEVERITY

The client now use OpenZeppelin’s ECDSA library.

RESOLVED

Page of 92 106 VerifierBasic Paladin Blockchain Security

Issue #79 Unused imports

Severity

Location L5, 6

import "../base/AdapterBase.sol";

import {ISAVAX} from "../../interfaces/benqi/ISAVAX.sol";

Description Files that are imported in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

Recommendation Consider removing the unused imports to keep the contract short
and simple.

Resolution

ISAVAX has been removed but AdapterBase has not.

RESOLVED

INFORMATIONAL

Issue #80 Typographical error

Severity

Location Line 18

"\x19Ethereum Signed Message\n" + len(msg) + msg

Description This is not actually what’s happening on the return statement
under this comment.

Recommendation Consider fixing this typographical error.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 93 106 VerifierBasic Paladin Blockchain Security

2.17	 	BankerJoeAdapter / BenqiAdapter

BankerJoeAdapter and BenqiAdapter are adapters that allows CIAN users to use
the lending platform managed by the TraderJoe team, BankerJoe, and the one
managed by Benqi. It allows users to lend and borrow assets to receive incentives
from the lending platforms.

The two adapters are delegation adapters for deposits, borrows, repays, and
claiming rewards, while it is a call adapter for withdrawals.

2.17.1	 Privileged Functions

The following functions can be called by the various privileged roles of the contract:

• initialize [timelock]

• deposit [only delegation]

• withdraw [adapterManager]

• enterMarkets [only delegation]

• exitMarket [only delegation]

• borrow [only delegation]

• repay [only delegation]

• claimReward / claimRewards (BankerJoeAdapter / BenqiAdapter) [only

delegation] 

Page of 94 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

2.17.2	 Issues & Recommendations

Issue #81 Governance privilege: The timelock could be used to steal users’
tokens

Severity

Description Governance could steal users’ tokens by adding malicious tokens to
the trusted list if they control the operator.

Recommendation Consider checking that the assets added to the trusted list are
registered within their respective comptroller. A call to
comptroller.markets(cToken).isListed suffices (or
joetroller.isMarketListed).

Resolution

The client has added the check to the respective contracts.

RESOLVED

MEDIUM SEVERITY

Issue #82 repay may use an outdated value

Severity

Description The repay function uses borrowBalanceStored to get the total
amount of AVAX needed to be sent to repay the user’s loan. This
value is likely outdated as it does not call accrueInterest, and this
will result in users not being able to repay their entire loan.

Recommendation Consider using borrowBalanceCurrent to have the current
borrowBalance and allow users to repay their entire loan.

Resolution

MEDIUM SEVERITY

The client now uses the current borrow balance.

RESOLVED

Page of 95 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

Issue #83 Operations do not revert if underlying protocols are paused

Severity

Description Both underlying protocols are based upon the Compound codebase
which is notorious for not reverting on errors. This causes the
overall operation to potentially not revert even if Banker Joe is for
example paused.

Recommendation Consider requiring the return values of all Banker Joe and Benqi
interactions to return the zero value.

Resolution RESOLVED

MEDIUM SEVERITY

Issue #84 Governance could delist a market making redemption of tokens
complicated

Severity

Description The governance could use the initialize function to delist a
token, making the redemption of the underlying tokens complicated
as the user should use a low-level call to do it, or transfer the
tokens to one of its EOA.

Recommendation Consider whether this is wanted or always allows users to withdraw
or repay assets even if the governance delists them.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 96 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

Issue #85 GetUserDepositPosition returns wrong values

Severity

Description GetUserDepositPosition returns wrong values as it should not be
divided by token **decimals. Hopefully, as all lending tokens have
the same decimals (i.e. 8), the returned value would simply not have
the right number of decimals.

Recommendation Consider fixing the function by using the following code:

assetValue += (tokenBalance * price * exchangeRateStored) /

1e36;

Resolution RESOLVED

LOW SEVERITY

Issue #86 BankerJoeAdapter: Unused events — TraderJoeStake and
TraderJoeUnstake

Severity

Description Events which are defined in a contract but remain unused could
confuse third-party auditors. They furthermore increase the
contract length for no reason.

Recommendation Consider removing the events to keep the contract short and
simple.

Resolution

INFORMATIONAL

RESOLVED

Page of 97 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

Issue #87 BankerJoeAdapter: Unused variable — joeBarAddr

Severity

Description Variables defined in a contract but not used within said contract
could confuse third-party auditors. They also increase the contract
length and bytecode size unnecessarily.

Recommendation Consider removing the variable to keep the contract short and
simple.

Resolution

The variable was removed.

RESOLVED

INFORMATIONAL

Page of 98 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

Issue #88 Typographical errors

Severity

Description The contract contains a number of typographical errors which we
have consolidated below in a single issue in an effort to keep the
report size reasonable.

L69

function initialize(

This function is not an initializer as it can be called multiple times.
Consider renaming it.

BankerJoe::126

//todo delete jtokenAddr arg

The comment should be removed to keep the contract short and
simple. Additionally, jTokenAddr should indeed be removed from
the event so there is consistency between BenqiAdapter and
BankerJoeAdapter.

BenqiAdapter::

event BenqiWithDraw(address token, uint256 amount, address

account);

The event should be named BenqiWithdraw.

L245

/// @return The calaculated value.

The spelling should be calculated.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

PARTIALLY RESOLVED

Page of 99 106 BankerJoeAdapter / BenqiAdapter Paladin Blockchain Security

2.18	 	JoeERC3156

The JoeERC3156 is a helper contract to perform flashloans using the BankerJoe
lending platform.

Page of 100 106 JoeERC3156 Paladin Blockchain Security

2.18.1	 Issues & Recommendations

Issue #89 Lack of authentication on flashLoan call

Severity

Description Anyone can initiate a flashloan, and if the goal is for this contract to
ever be whitelisted as a flashloan provider (in flashLoanWhiteList)
this would be a huge problem as it would allow for privilege
escalation.

We are however unsure whether this contract is supposed to be a
flashloan provider or what its purpose is. If we follow the operation
flow, it does not seem to be able to be used as a call-based adapter
as the onFlashLoan call would be made with the adapter manager
as the initiator. User wallets only allow such calls to be made if the
initiator is in fact the CallProxy, which has a different interface for
the flashloan management.

Recommendation Consider explaining to us how this contract is supposed to be used.
Consider adding validation to flashloan if it is supposed to be an
adapter, and in that case, consider redesigning the flashloan hook
as we believe it currently would not work.

As discussed in the core section of this report, we generally dislike
the way flashloans are managed within the core. If this is simply
supposed to be a utility contract used by call adapters we do
understand the merit, but it might make more sense to not allow the
specification of a receiver in that case and always execute the
callback on the originInitiator.

Resolution

JoeERC3156 has been removed.

RESOLVED

HIGH SEVERITY

Page of 101 106 JoeERC3156 Paladin Blockchain Security

Issue #90 The initiator address of the onFlashLoan is not reliable

Severity

Description The BankerJoe implementation of flashloans diverges from the
original EIP-3156 by allowing anyone to bypass the initiator
authentication. Therefore, it cannot be relied on to be the
msg.sender.

Recommendation Consider not trusting the initiator of the flashloan and carefully
check that no harm can be done.

Resolution

JoeERC3156 has been removed.

RESOLVED

MEDIUM SEVERITY

Issue #91 onFlashLoan callback is vulnerable to reentrancy

Severity

Location L115-116

originTarget = address(0);

originInitator = address(0);

Description Unsetting the origin this late is not a good idea as this would allow
onFlashLoan to be called twice in a reentrancy attack.

Recommendation Consider immediately unsetting it before the callback.

Resolution

JoeERC3156 has been removed.

RESOLVED

MEDIUM SEVERITY

Page of 102 106 JoeERC3156 Paladin Blockchain Security

Issue #92 Governance privilege: The timelock could be used to steal users’
tokens

Severity

Description The governance could steal users’ tokens by setting a malicious
address instead of the jTokens address in order to steal user’s
tokens when they call the flashLoan function.

Recommendation Consider checking that the assets added to the trusted list are
registered within the JoeTroller.

Resolution

MEDIUM SEVERITY

JoeERC3156 has been removed.

RESOLVED

Page of 103 106 JoeERC3156 Paladin Blockchain Security

Issue #93 Typographical errors

Severity

Description The contract contains a number of typographic mistakes which
we’ve enumerated below in a single issue in an effort to keep the
report size reasonable.

L30

* @dev From ERC-3156. The amount of currency available to be

lended.

This should be “to be lent”.

L31

* @param token The loan currency, in jToken.

This is the ordinary token, not the jToken.

L74

 * @param receiver The contract receiving the tokens, needs

to implement the onFlashLoan(address user, uint256 amount,

uint256 fee, bytes calldata) interface.

The interface to implement is in fact different, as it also contains the
token address as seen within the callback within onFlashLoan.

L87

originInitator = msg.sender;

Throughout the contract, initiator is misspelled.

Recommendation Consider fixing the typographical errors.

Resolution

JoeERC3156 has been removed.

RESOLVED

INFORMATIONAL

Page of 104 106 JoeERC3156 Paladin Blockchain Security

2.19	 	Timelock

The Timelock contract is a clean fork of Compound Finance’s timelock. This is the
most common contract used in DeFi to time lock governance access and is thus
compatible with most third-party tools.

2.19.1	 Issues & Recommendations

No issues found.

Parameter Value Description

Delay 12 hours The delay indicates the time the administrator has to wait after
queuing a transaction to execute it.

Minimum
Delay

12 hours The minDelay indicates the lowest value that the delay can
minimally be set.

Sometimes, projects will queue a transaction that sets the
delay to zero with the hope that nobody notices it. However,
because of the minimum delay parameter, the value of delay
can never be lower than that of the minDelay value. Note that
the administrator could still queue a transaction to simply
transfer the ownership back to their own account so it is still
important to inspect every transaction carefully.

Grace Period 14 days After the delay has expired after queueing a transaction, the
administrator can only execute it within the grace period. This
is to prevent them from hiding a malicious transaction among
much earlier transactions, hoping that it goes unnoticed or
buried, which can be executed in the future.

Page of 105 106 Timelock Paladin Blockchain Security

Page of 106 106 Timelock Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 ProxyWallet
	1.3.3 ControllerLib
	1.3.4 WalletFactory
	1.3.5 CallProxy/CallProxyLib
	1.3.6 ERC2612Verifier
	1.3.7 ControllerLink
	1.3.8 Record
	1.3.9 ProxyCallable
	1.3.10 AdapterManager
	1.3.11 AdapterBase
	1.3.12 WavaxGateway
	1.3.13 SAVAXAdapter
	1.3.14 TraderJoeAdapter
	1.3.15 FeeBoxAVAX, FeeBoxSAVAX and FeeBoxToken
	1.3.16 VerifierBasic
	1.3.17 BankerJoeAdapter / BenqiAdapter
	1.3.18 JoeERC3156
	1.3.19 Timelock

	2 Findings
	2.1 Global Issues
	2.1.3 Issues & Recommendations

	2.2 ProxyWallet
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 ControllerLib
	2.3.1 Privileged Functions
	2.3.2 Issues & Recommendations

	2.4 WalletFactory
	2.4.1 Privileged Functions
	2.4.2 Issues & Recommendations

	2.5 CallProxy/CallProxyLib
	2.5.1 Privileged Functions
	2.5.2 Issues & Recommendations

	2.6 ERC2612Verifier
	2.6.1 Privileged Functions
	2.6.2 Issues & Recommendations

	2.7 ControllerLink
	2.7.1 Privileged Functions
	2.7.2 Issues & Recommendations

	2.8 Record
	2.8.1 Privileged Functions
	2.8.2 Issues & Recommendations

	2.9 ProxyCallable
	2.9.1 Issues & Recommendations

	2.10 AdapterManager
	2.10.1 Privileged Functions
	2.10.2 Issues & Recommendations

	2.11 AdapterBase
	2.11.1 Privileged Functions
	2.11.2 Issues & Recommendations

	2.12 WavaxGateway
	2.12.1 Issues & Recommendations

	2.13 SAVAXAdapter
	2.13.1 Issues & Recommendations

	2.14 TraderJoeAdapter
	2.14.1 Privileged Functions
	2.14.2 Issues & Recommendations

	2.15 FeeBoxAVAX, FeeBoxSAVAX and FeeBoxToken
	2.15.1 Privileged Functions
	2.15.2 Issues & Recommendations

	2.16 VerifierBasic
	2.16.1 Issues & Recommendations

	2.17 BankerJoeAdapter / BenqiAdapter
	2.17.1 Privileged Functions
	2.17.2 Issues & Recommendations

	2.18 JoeERC3156
	2.18.1 Issues & Recommendations

	2.19 Timelock
	2.19.1 Issues & Recommendations

