
Public

SMART CONTRACT AUDIT REPORT

for

OnePiece

Prepared By: Patrick Lou

PeckShield
April 25, 2022

1/25 PeckShield Audit Report #: 2022-108

"OnePiece" has officially changed its name to "CIAN" in May

contact@peckshield.com

Public

Document Properties

Client OnePiece
Title Smart Contract Audit Report
Target OnePiece
Version 1.0
Author Luck Hu
Auditors Luck Hu, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 25, 2022 Luck Hu Final Release
1.0-rc April 11, 2022 Luck Hu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 156 0639 2692
Email contact@peckshield.com

2/25 PeckShield Audit Report #: 2022-108

Public

Contents

1 Introduction 4
1.1 About OnePiece . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improper Authorization Checks in ControllerLink . 11
3.2 Lack Of Timelocked Tx Execution in TimeLock . 12
3.3 Improved Logic of ERC2612Verifier::permit() . 14
3.4 Consistent Deadline Handling Between ERC2612Verifier::permit() & isTxPermitted() 15
3.5 Possible Double Initialization From Initializer Reentrancy 17
3.6 Accommodation of Non-ERC20-Compliant Tokens 18
3.7 Trust Issue Of Admin Keys . 20

4 Conclusion 23

References 24

3/25 PeckShield Audit Report #: 2022-108

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
OnePiece protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contract can be further improved due
to the presence of several issues related to business logic, security or performance. This document
outlines our audit results.

1.1 About OnePiece

OnePiece is an automation platform contributed and utilized by users to improve onchain efficiency
and capital utilization. It aims to be a DeFi operating system that redefines the way you perform a
DeFi task. It substitutes the intricate, time-consuming manual operations with simple task definition

of few clicks. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of the OnePiece

Item Description
Name OnePiece

Website https://onepiece.ai//
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report April 25, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/onepiece-ai/onepiece-protocol-audit.git (037ce54)

4/25 PeckShield Audit Report #: 2022-108

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:
(Note PVE005 is partially fixed by this commit.)

• https://github.com/onepiece-ai/onepiece-protocol-audit.git (88241c5)

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [12]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/25 PeckShield Audit Report #: 2022-108

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/25 PeckShield Audit Report #: 2022-108

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/25 PeckShield Audit Report #: 2022-108

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/25 PeckShield Audit Report #: 2022-108

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the OnePiece design and implementation. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 4

Informational 0

Total 7

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined some issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/25 PeckShield Audit Report #: 2022-108

Public

2.2 Key Findings

Overall, the audited protocol is well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
2 medium-severity vulnerabilities, and 4 low-severity vulnerabilities.

Table 2.1: Key OnePiece Audit Findings

ID Severity Title Category Status
PVE-001 High Improper Authorization Checks in Con-

trollerLink
Security Features Fixed

PVE-002 Medium Lack Of Timelocked Tx Execution in
TimeLock

Business Logic Fixed

PVE-003 Low Improved Logic of
ERC2612Verifier::permit()

Coding Practices Fixed

PVE-004 Low Consistent Deadline Handling Between
ERC2612Verifier::permit() & isTxPermit-
ted()

Coding Practices Fixed

PVE-005 Low Possible Double Initialization From Initial-
izer Reentrancy

Coding Practices Fixed

PVE-006 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practice Fixed

PVE-007 Medium Trust Issue Of Admin Keys Security Features Confirmed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/25 PeckShield Audit Report #: 2022-108

Public

3 | Detailed Results

3.1 Improper Authorization Checks in ControllerLink

• ID: PVE-001

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: ControllerLink

• Category: Security Features [7]

• CWE subcategory: CWE-287 [3]

Description

In the OnePiece protocol, there is a ControllerLink contract to maintain a user database. With the
database, users could be added via the addAuth() routine, and removed via the removeAuth() routine.
While examining these two routines, we notice the existence of improper authorization checks that
need to be corrected.

To elaborate, we show below the code snippets of these two routines. It comes to our attention
that there is no access control restriction enforced on the addAuth() routine, which allows anyone to
invoke it. In addition, the authorization check (line 68) of the removeAuth() routine could be easily
bypassed by a malicious user since the validation check depends on the untrusted input! Specifically,
the calling contract (msg.sender) can simply return false in its crafted isAuth() implementation to
bypass the validation check.

56 f unc t i on addAuth (address _owner , address _account) ex te rna l {
57 account s++;
58 account ID [_account] = account s ;
59 accountAddr [account s] = _account ;
60 addAccount (_owner , account ID [_account]) ;
61 addUser (_owner , account ID [_account]) ;

63 emit NewAccount (_owner , _account) ;
64 }

66 f unc t i on removeAuth (address _owner , address _account) ex te rna l {
67 r equ i r e (account ID [_account] != 0 , "not -account") ;

11/25 PeckShield Audit Report #: 2022-108

Public

68 r equ i r e (! A c c o un t I n t e r f a c e (msg . sender) . i sAu th (_owner) , "already -owner") ;
69 removeAccount (_owner , account ID [_account]) ;
70 removeUser (_owner , account ID [_account]) ;
71 }

Listing 3.1: ControllerLink . sol

Our assessment shows that the above improper authorization check will make the addAuth()/

removeAuth() routines open to public. Therefore, it is suggested to add necessary access controls to
better protect users and their assets.

Recommendation Add the necessary access control authorization to the addAuth()/removeAuth

() routines.

Result The issue has been fixed by this commit: e5c88a9.

3.2 Lack Of Timelocked Tx Execution in TimeLock

• ID: PVE-002

• Severity: Medium

• Likelihood: Low

• Impact: Medium

• Target: Timelock

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The OnePiece protocol has an AdapterManager contract to mediate and manage all the adapters used in
the protocol. Our analysis shows that the registration of new adapters and un-registration of existing
ones are controlled by the Timelock contract, which queues and executes proposals that survive a
governance vote. The Timelock contract has a delay period (12 hours-30 days), which defines the
lock time of the queued transaction before it can be executed. And the Timelock contract also defines
a GRACE_PERIOD (14 days) which gives the last time before which the transaction must be executed
after it has passed the time-locked period. While examining the time lock logic, we notice the time
lock is currently disabled (lines 127 − 130 and 179 − 186). Without the time lock enforcement, any
transaction could be queued and executed instantly.

116 function queueTransaction(
117 address target ,
118 uint256 value ,
119 string memory signature ,
120 bytes memory data ,
121 uint256 eta
122) public returns (bytes32) {
123 require(

12/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/e5c88a9

Public

124 msg.sender == admin ,
125 "Timelock :: queueTransaction: Call must come from admin."
126);
127 // require(
128 // eta >= getBlockTimestamp () + delay ,
129 // "Timelock :: queueTransaction: Estimated execution block must satisfy delay

."
130 //);
131 ...
132 return txHash;
133 }

Listing 3.2: Timelock::queueTransaction()

160 function executeTransaction(
161 address target ,
162 uint256 value ,
163 string memory signature ,
164 bytes memory data ,
165 uint256 eta
166) public payable returns (bytes memory) {
167 require(
168 msg.sender == admin ,
169 "Timelock :: executeTransaction: Call must come from admin."
170);
171
172 bytes32 txHash = keccak256(
173 abi.encode(target , value , signature , data , eta)
174);
175 require(
176 queuedTransactions[txHash],
177 "Timelock :: executeTransaction: Transaction hasn’t been queued."
178);
179 // require(
180 // getBlockTimestamp () >= eta ,
181 // "Timelock :: executeTransaction: Transaction hasn’t surpassed time lock."
182 //);
183 // require(
184 // getBlockTimestamp () <= eta + GRACE_PERIOD ,
185 // "Timelock :: executeTransaction: Transaction is stale."
186 //);
187
188 queuedTransactions[txHash] = false;
189 ...
190 return returnData;
191 }

Listing 3.3: Timelock::executeTransaction()

Recommendation Enforce the above-mentioned time lock logic in the Timelock contract.

Status The issue has been fixed by this commit: a6108b8.

13/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/a6108b8

Public

3.3 Improved Logic of ERC2612Verifier::permit()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: ERC2612Verifier

• Category: Coding Practices [8]

• CWE subcategory: CWE-563 [4]

Description

To facilitate the user interaction, the OnePiece protocol has an ERC2612Verifier contract to support
the EIP2612-compliant functionality. In particular, the permit() function is introduced to simplify the
call forwarding process.

To elaborate, we show below this permit() routine in the ERC2612Verifier contract. This routine
ensures that the owner of the given account is indeed the one who signs the approve request. Note
that the internal implementation makes use of the ecrecover() precompile for validation (line 89).
It comes to our attention that the precompile-based validation needs to properly ensure the signer,
i.e., OwnableUpgradeable(account).owner(), is not equal to address(0). Because the ecrecover() will
return address(0) for any failure. If the owner of the given account renounces the ownership, then
the owner becomes address(0). As a result, anybody could approve a function call forwarded to the
given account.

63 function permit(
64 address account ,
65 address operator ,
66 bytes32 approvalType ,
67 uint256 deadline ,
68 uint8 v,
69 bytes32 r,
70 bytes32 s
71) external {
72 require(deadline >= block.timestamp , "Permit: EXPIRED");
73 bytes32 digest = keccak256(
74 abi.encodePacked(
75 "\x19\x01",
76 DOMAIN_SEPARATOR ,
77 keccak256(
78 abi.encode(
79 PERMIT_TYPEHASH ,
80 account ,
81 operator ,
82 approvalType ,
83 nonces[account]++,
84 deadline
85)
86)

14/25 PeckShield Audit Report #: 2022-108

Public

87)
88);
89 address recoveredAddress = ecrecover(digest , v, r, s);
90 require(
91 OwnableUpgradeable(account).owner() == recoveredAddress ,
92 "not the owner of the address"
93);
94 approvals_deadline[account][operator] = deadline;
95 emit OperatorUpdate(account , operator);
96 }

Listing 3.4: ERC2612Verifier::permit()

Recommendation Strengthen the permit() routine to ensure the recoveredAddress is not equal
to address(0).

Status The issue has been fixed by this commit: e85a2a6.

3.4 Consistent Deadline Handling Between
ERC2612Verifier::permit() & isTxPermitted()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ERC2612Verifier

• Category: Coding Practices [8]

• CWE subcategory: CWE-1041 [1]

Description

As mentioned earlier, the ERC2612Verifier contract has the permit() function to simplify the call
forwarding process. Specifically, it approves a transaction on the give account after validating the
signer of the request. The approval is controlled by the deadline argument, which defines the valid
time of the approval. After the deadline expires, the approval becomes stale. While examining the
deadline validation, we observe an inconsistency between the permit() routine and the isTxPermitted

() routine.
To elaborate, we show below the code snippet from the ERC2612Verifier contract. Specially, in

the permit() routine, the valid time of the approval includes the deadline (line 72). While in the
isTxPermitted() routine, the valid time of the approval does not include the deadline (line 103). It
is suggested to keep them consistent.

63 f unc t i on pe rm i t (
64 address account ,
65 address ope ra to r ,

15/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/e85a2a6

Public

66 bytes32 approva lType ,
67 uint256 dead l i n e ,
68 u int8 v ,
69 bytes32 r ,
70 bytes32 s
71) ex te rna l {
72 r equ i r e (d e a d l i n e >= block . timestamp , "Permit: EXPIRED") ;
73 bytes32 d i g e s t = keccak256 (
74 ab i . encodePacked (
75 "\x19\x01" ,
76 DOMAIN_SEPARATOR,
77 keccak256 (
78 ab i . encode (
79 PERMIT_TYPEHASH,
80 account ,
81 ope ra to r ,
82 approva lType ,
83 nonces [account]++,
84 d e a d l i n e
85)
86)
87)
88) ;
89 address r e c o v e r e dAdd r e s s = ecrecover (d i g e s t , v , r , s) ;
90 r equ i r e (
91 OwnableUpgradeable (account) . owner () == recove r edAdd r e s s ,
92 "not the owner of the address"
93) ;
94 app r o v a l s_dead l i n e [account] [o p e r a t o r] = d e a d l i n e ;
95 emit OperatorUpdate (account , o p e r a t o r) ;
96 }

98 f unc t i on i sTxPe rm i t t ed (
99 address account ,

100 address ope ra to r ,
101 uint256
102) ex te rna l view o v e r r i d e r e tu rn s (uint256) {
103 i f (app r o v a l s_dead l i n e [account] [o p e r a t o r] > block . timestamp) {
104 re tu rn 1 ;
105 }
106 re tu rn 0 ;
107 }

Listing 3.5: ERC2612Verifier. sol

Recommendation Revise the above mentioned routines to make the deadline check of the
approval consistent.

Status The issue has been fixed by this commit: e85a2a6.

16/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/e85a2a6

Public

3.5 Possible Double Initialization From Initializer Reentrancy

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Multiple Contracts

• Category: Time and State [10]

• CWE subcategory: CWE-682 [5]

Description

The OnePiece protocol supports flexible contract initialization, so that the initialization task does not
need to be performed inside the constructor at deployment. This feature is enabled by introducing
the initializer() modifier that protects an initializer function from being invoked twice. It becomes
known that the popular OpenZepplin reference implementation has an issue that makes it possible to
re-enter initializer()-protected functions. In particular, for this to happen, one call may need to
be a nested-call of the other, or both calls have to be subcalls of a common initializer()-protected
function. You can find more in detail about this issue from: #3006.

The reentrancy can be dangerous as the initialization is not part of the proxy construction, and
it becomes possible by executing an external call to an untrusted address. As part of the fix, there
is a need to forbid initializer()-protected functions to be nested when the contract is already
constructed.

To elaborate, we show below the current initializer() implementation as well as the fixed
implementation.

31 modifier initializer () {
32 require(
33 _initializing || !_initialized ,
34 "Initializable: contract is already initialized"
35);
36
37 bool isTopLevelCall = !_initializing;
38 if (isTopLevelCall) {
39 _initializing = true;
40 _initialized = true;
41 }
42
43 _;
44
45 if (isTopLevelCall) {
46 _initializing = false;
47 }
48 }

Listing 3.6: Initializable::initializer()

17/25 PeckShield Audit Report #: 2022-108

https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.4.1

Public

31 modifier initializer () {
32 require(_initializing? _isConstructor () : !_initialized , "Initializable:

contract is already initialized");
33
34 bool isTopLevelCall = !_initializing;
35 if (isTopLevelCall) {
36 _initializing = true;
37 _initialized = true;
38 }
39
40 _;
41
42 if (isTopLevelCall) {
43 _initializing = false;
44 }
45 }

Listing 3.7: Revised Initializable::initializer()

Recommendation Enforce the initializer() modifier to prevent it from being re-entered.

Status The issue has been partially fixed by this commit: 3494535.

3.6 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [8]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**

18/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/3494535

Public

195 * @dev Approve the passed address to spend the specified amount of tokens on behalf
of msg.sender.

196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.8: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. To
accommodate the specific idiosyncrasy, there is a need to approve() twice: the first one reduces the
allowance to 0; and the second one sets the new allowance.

More importantly, the approve() function of some token may return false while not revert on
failure. Accordingly, the call to approve() is expected to check the return value. If it returns false,
the call to approve() shall be failed.

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
transfer()/transferFrom() as well, i.e., safeTransfer()/safeTransferFrom().

In the following, we show the approve() routine in the ControllerLib contract. If the approve() of
the given token does not revert on failure, the unsafe version of IERC20(token).approve(to, amount)

(line 244) need to check the return value while not assuming the approve() will revert internally.

239 f unc t i on approve (
240 address token ,
241 address to ,
242 uint256 amount
243) ex te rna l on l yPe rm i t {
244 IERC20 (token) . approve (to , amount) ;
245 }

Listing 3.9: ControllerLib :: approve()

Note same issue exists in the ControllerLib contract and the TraderJoeAdapter contract.

19/25 PeckShield Audit Report #: 2022-108

Public

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom(). And there is a need to approve() twice: the first one reduces
the allowance to 0; and the second one sets the new allowance.

Status The issue has been fixed by this commit: 13c8dd6.

3.7 Trust Issue Of Admin Keys

• ID: PVE-007

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple contracts

• Category: Security Features [7]

• CWE subcategory: CWE-287 [3]

Description

In the OnePiece protocol, there exist certain privileged accounts that play critical roles in governing
and regulating the protocol-wide operations. In the following, we examine these privileged accounts
and their related privileged accesses in current contracts.

Firstly, the privileged functions in the ControllerLib contract allow for the the owner to withdraw
all the tokens from the contract. And the owner/_automation are privileged to approve tokens transfer
from current contract to other amounts, etc.

196 function withdrawAsset(
197 address _token ,
198 address _recipient ,
199 uint256 _amount
200) external onlyOwner {
201 if (_recipient != owner()) {
202 require(advancedOptionEnable , "Not allowed!");
203 }
204 bool isEth = _token == avaxAddr;
205 if (isEth) {
206 uint256 _balance = address(this).balance;
207 require(_balance >= _amount , "not enough AVAX balance");
208 safeTransferAVAX(_recipient , _amount);
209 } else {
210 uint256 _balance = IERC20(_token).balanceOf(address(this));
211 require(_balance >= _amount , "not enough token balance");
212 IERC20(_token).transfer(_recipient , _amount);
213 }
214 }

Listing 3.10: ControllerLib::withdrawAsset()

20/25 PeckShield Audit Report #: 2022-108

https://github.com/onepiece-ai/onepiece-protocol-audit/commit/13c8dd6

Public

239 function approve(
240 address token ,
241 address to ,
242 uint256 amount
243) external onlyPermit {
244 IERC20(token).approve(to, amount);
245 }

Listing 3.11: ControllerLib::approve()

Secondly, the privileged function in the CallProxyLib contract allows for the the owner to set the
whitelist of the loan providers.

226 function setFlashLoanWhiteList(address protocol , bool val)
227 external
228 onlyOwner
229 {
230 flashLoanWhiteList[protocol] = val;
231 }

Listing 3.12: CallProxyLib::setFlashLoanWhiteList()

Lastly, the privileged functions in the AdapterManager contract allow for the the owner to set the
partners who can pause the contract. The owner is also privileged to pause/unpause the contract.

184 function setPauseWhiteList(address partner , bool val) external onlyOwner {
185 if (val == false) {
186 require(suspendPermissions[partner], "No change.");
187 } else {
188 require (! suspendPermissions[partner], "No change.");
189 }
190 suspendPermissions[partner] = val;
191 }
192
193 function setPause(bool val) external {
194 if (val == true) {
195 require(
196 suspendPermissions[msg.sender] msg.sender == owner(),
197 "verification failed."
198);
199 } else {
200 require(msg.sender == owner (), "verification failed.");
201 }
202 _paused = val;
203 if (_paused) {
204 emit Paused ();
205 } else {
206 emit Unpaused ();
207 }
208 }

Listing 3.13: AdapterManager.sol

21/25 PeckShield Audit Report #: 2022-108

Public

There are also some other privileged functions not listed above. And we understand the need of
the privileged functions for proper contract operations, but at the same time the extra power to these
privileged accounts may also be a counter-party risk to the contract users. Therefore, we list this
concern as an issue here from the audit perspective and highly recommend making these privileges
explicit or raising necessary awareness among protocol users.

Recommendation Make the list of extra privileges granted to owner/_automation, etc. explicit
to OnePiece protocol users.

Status This issue has been confirmed.

22/25 PeckShield Audit Report #: 2022-108

Public

4 | Conclusion

In this audit, we have analyzed the OnePiece design and implementation. The protocol is designed
to be an automation platform for users to improve onchain efficiency and capital utilization. During
the audit, we notice that the current code base is well organized. and those identified issues are
promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

23/25 PeckShield Audit Report #: 2022-108

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[5] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[6] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[7] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

24/25 PeckShield Audit Report #: 2022-108

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[11] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[12] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

25/25 PeckShield Audit Report #: 2022-108

https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About OnePiece
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Authorization Checks in ControllerLink
	Lack Of Timelocked Tx Execution in TimeLock
	Improved Logic of ERC2612Verifier::permit()
	Consistent Deadline Handling Between ERC2612Verifier::permit() & isTxPermitted()
	Possible Double Initialization From Initializer Reentrancy
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue Of Admin Keys

	Conclusion
	References

