
Page of 1 71 Paladin Blockchain Security

Smart Contract
Security Assessment

paladinsec.co info@paladinsec.co

Final Report

For Cian (Ethereum)
24 September 2022

Table of Contents

Table of Contents 2

Disclaimer 6

1 Overview 7

1.1 Summary 7

1.2 Contracts Assessed 8

1.3 Findings Summary 9

1.3.1 Global Issues 10

1.3.2 AdapterBase 10

1.3.3 OneInchAdapter 10

1.3.4 WethGateway 10

1.3.5 AaveAdapter 11

1.3.6 CurvesteCRVAdapter 11

1.3.7 FeeBoxETH 11

1.3.8 FeeBoxStETH 12

1.3.9 VerifierBasic 12

1.3.10 LidoAdapter 12

1.3.11 ParaswapAdapter 12

1.3.12 AdapterManager 12

1.3.13 AccountManager 13

1.3.14 Automation 13

1.3.15 AutomationCallable 13

1.3.16 ControllerLib 13

1.3.17 ControllerLibSub 14

1.3.18 ControllerLink 14

1.3.19 BalancerERC3156 14

1.3.20 ERC2612Verifier 14

1.3.21 TokenApprovalVerifier 14

Page of 2 71 Paladin Blockchain Security

1.3.22 Timelock 15

1.3.23 TimelockCallable 15

1.3.24 AddressArrayLib 15

2 Findings 16

2.1 Global Issues 16

2.1.1 Issues & Recommendations 17

2.2 Adapters/AdapterBase 18

2.2.1 Privileged Functions 18

2.2.2 Issues & Recommendations 19

2.3 Adapters/OneInchAdapter 20

2.3.1 Issues & Recommendations 20

2.4 Adapters/WethGateway 21

2.4.1 Issues & Recommendations 21

2.5 Adapters/AaveAdapter 22

2.5.1 Privileged Functions 22

2.5.2 Issues & Recommendations 23

2.6 Adapters/CurvesteCRVAdapter 29

2.6.1 Issues & Recommendations 30

2.7 Adapters/FeeBoxETH 31

2.7.1 Privileged Functions 31

2.7.2 Issues & Recommendations 32

2.8 Adapters/FeeBoxStETH 34

2.8.1 Privileged Functions 34

2.8.2 Issues & Recommendations 35

2.9 Adapters/VerifierBasic 37

2.9.1 Issues & Recommendations 38

2.10 Adapters/LidoAdapter 39

2.10.1 Privileged Functions 39

2.10.2 Issues & Recommendations 40

2.11 Adapters/ParaswapAdapter 41

Page of 3 71 Paladin Blockchain Security

2.11.1 Issues & Recommendations 41

2.12 Adapters/AdapterManager 42

2.12.1 Privileged Functions 42

2.12.2 Issues & Recommendations 42

2.13 Core/AccountManager 43

2.13.1 Privileged Functions 44

2.13.2 Issues & Recommendations 45

2.14 Core/Automation 49

2.14.1 Privileged Functions 49

2.14.2 Issues & Recommendations 50

2.15 Core/AutomationCallable 51

2.15.1 Issues & Recommendations 51

2.16 Core/ControllerLib 52

2.16.1 Privileged Functions 52

2.16.2 Issues & Recommendations 53

2.17 Core/ControllerLibSub 57

2.17.1 Privileged Functions 57

2.17.2 Issues & Recommendations 58

2.18 Core/ControllerLink 59

2.18.1 Privileged Functions 59

2.18.1 Privileged Functions 59

2.19 Core/BalancerERC3156 60

2.19.1 Issues & Recommendations 61

2.20 Core/ERC2612Verifier 63

2.20.1 Privileged Functions 63

2.20.1 Issues & Recommendations 63

2.21 Core/TokenApprovalVerifier 64

2.21.1 Privileged Functions 64

2.21.2 Issues & Recommendations 64

2.22 Timelock 65

Page of 4 71 Paladin Blockchain Security

2.22.1 Privileged Functions 66

2.22.2 Issues & Recommendations 67

2.23 TimelockCallable 68

2.23.1 Privileged Functions 68

2.23.2 Issues & Recommendations 68

2.24 AddressArrayLib 69

2.24.1 Issues & Recommendations 70

Page of 5 71 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so.

Page of 6 71 Paladin Blockchain Security

1 Overview
This report has been prepared for Cian’s contracts on the Ethereum network.
Paladin provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

This audit is an extension from the Avalanche audit. All acknowledged issues
remain valid in this audit.

1.1 Summary
Project Name Cian

URL https://cian.app/

Network Ethereum

Language Solidity

Page of 7 71 Paladin Blockchain Security

1.2 Contracts Assessed

Name Contract
Live Code
Match

AdapterBase Dependency

OneInchAdapter 0x601954e6AfB77Dac21503DbDfA751fbef9eE5374

WethGateway 0xc397df95d7313159b667c58A541201BD936a2aA3

AaveAdapter 0x5b465489FF729f73ec911245A84B25231b5824bA

CurvesteCRVAdapter 0xD896bf804c01c4C0Fa5C42bF6A4b15C465009481

FeeBoxETH 0x0b20d5d59E14C71a948D55439019a2Aaf74Fa7B4

FeeBoxStETH 0xC5C9953516635659e03345738D8390b7ada6351c

VerifierBasic Dependency

LidoAdapter 0xD3812219eb241053F9cf2b43f9B367c0b28E03DA

ParaswapAdapter 0x9aa8b1998B1882008c407fbB5BF775A5E2d8e544

AdapterManager 0xc936161B3C80494172ae58734e3CE16e26D493C1

AccountManager Not Deployed

Automation 0x53C8bF6875C66E8d7C42e30BeeF7e6241997F7e3

AutomationCallable Dependency

ControllerLib 0x74D2Bef5Afe200DaCC76FE2D3C4022435b54CdbB

ControllerLibSub 0x68041721C81c695B72495F78BeaC4F7DFD7b19c8

ControllerLink 0xb329504622bd79329c6F82CF8c60c807dF2090c4

BalancerERC3156 0xa958090601E21A82e9873042652e35891D945a8C

ERC2612Verifier 0x045969904402F5e674ef1f27713F3230929538DF

TokenApprovalVerifier 0xfC3A513036CCD84986c1b74e2Dba471Ef417de71

Timelock 0xb39e6f93cff9Af7011810f41a4ed9b14582019b7

TimelockCallable Dependency

AddressArrayLib Dependency

MATCH

N/A

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 8 71 Paladin Blockchain Security

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

0 - - -

10 7 1 2

5 2 - 3

20 12 1 7

Total 35 21 2 12

 Informational

 High

 Low

 Medium

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 Informational

 Medium

 High

Page of 9 71 Paladin Blockchain Security

1.3.1 Global Issues

1.3.2 AdapterBase

1.3.3 OneInchAdapter

No issues found.

1.3.4 WethGateway

No issues found.

ID Severity Summary Status

01 Typographical errors INFO ACKNOWLEDGED

ID Severity Summary Status

02 Adapters will not fail if a wrong function is called PARTIALMEDIUM

Page of 10 71 Paladin Blockchain Security

1.3.5 AaveAdapter

1.3.6 CurvesteCRVAdapter

1.3.7 FeeBoxETH

ID Severity Summary Status

03 The exchangeDebt function could be delegatecalled directly by any
contract

04 The positionTransfer function does not allow the transfer of
stable rate borrowings

05 The positionTransfer function does not refund enough tokens at
the end of the flashloan

06 The reentrancy check during flashloan is null and void

07 Ether can get stuck in the contract during a deposit

08 The initialize function could be used to add malicious bad
contracts

09 The positionTransfer function can only be called using the
multicall function

10 Unused imports and variables

11 Typographical errors

12 positionTransfer could run out of gas

INFO

MEDIUM

RESOLVED

ACKNOWLEDGED
MEDIUM

RESOLVED

LOW

INFO

RESOLVED

RESOLVED

INFO

RESOLVED

MEDIUM

PARTIAL

ACKNOWLEDGED

RESOLVED

ACKNOWLEDGED

LOW

MEDIUM

INFO

ID Severity Summary Status

13 Unused imports and variables

14 Lack of events for all functions

RESOLVED

INFO RESOLVED

INFO

ID Severity Summary Status

15 Typographical errors

16 Gas optimizations

RESOLVEDINFO

INFO ACKNOWLEDGED

Page of 11 71 Paladin Blockchain Security

1.3.8 FeeBoxStETH

1.3.9 VerifierBasic

1.3.10 LidoAdapter

1.3.11 ParaswapAdapter

No issues found.

1.3.12 AdapterManager

No issues found.

ID Severity Summary Status

17 Fees are incorrectly transferred back to the user

18 Typographical error

19 Lack of proper message during edge cases

RESOLVED

ACKNOWLEDGED

INFO

INFO

MEDIUM RESOLVED

ID Severity Summary Status

20 The verifierBasic contract is potentially vulnerable RESOLVEDMEDIUM

ID Severity Summary Status

21 referral is only set within the logic contract RESOLVEDMEDIUM

Page of 12 71 Paladin Blockchain Security

1.3.13 AccountManager

1.3.14 Automation

No issues found.

1.3.15 AutomationCallable

No issues found.

1.3.16 ControllerLib

ID Severity Summary Status

22 Authorized addresses are difficult to query

23 accountNum is a duplicate of the length function

24 The constructor does not emit the expected events

25 Lack of validation

26 Unused import

27 Typographical errors

RESOLVED

INFO RESOLVED

INFO

RESOLVED

RESOLVED

ACKNOWLEDGED

RESOLVED

LOW

INFO

INFO

INFO

ID Severity Summary Status

28 The multicall function might fail or send too much Ether

29 Privilege escalation: The approve functions allow the bypassing of
the advancedTradingEnable boolean

30 Typographical error

MEDIUM RESOLVED

MEDIUM
ACKNOWLEDGED

RESOLVEDINFO

Page of 13 71 Paladin Blockchain Security

1.3.17 ControllerLibSub

1.3.18 ControllerLink

No issues found.

1.3.19 BalancerERC3156

1.3.20 ERC2612Verifier

No issues found.

1.3.21 TokenApprovalVerifier

No issues found.

ID Severity Summary Status

31 implementationAddress must be made immutable for the value to
be set correctly on the proxy

INFO
RESOLVED

ID Severity Summary Status

32 maxFlashLoan returns a wrong value

33 The reentrancy check is flawed

34 vault can be made constant

ACKNOWLEDGED

ACKNOWLEDGED

LOW

INFO

ACKNOWLEDGED

LOW

Page of 14 71 Paladin Blockchain Security

1.3.22 Timelock

No issues found.

1.3.23 TimelockCallable

No issues found.

1.3.24 AddressArrayLib

ID Severity Summary Status

35 AddressArrayLib is unused ACKNOWLEDGEDINFO

Page of 15 71 Paladin Blockchain Security

2 Findings

2.1 Global Issues

The issues in this section occur across multiple contracts within the protocol.

Page of 16 71 Global Issues Paladin Blockchain Security

2.1.1 Issues & Recommendations

Issue #01 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

ProxyWallet::40 (example for variables)

address public immutable userDatabase;

ProxyWallet::76 (example for parameters)

function proxyAdminCheck(address defaultProxyAdmin)

Throughout the codebase, tokens and other contracts are almost
never cast to their correct type. This requires the developer to then
explicitly cast them to IERC20, IControllerLink,
IAdapterManager, etc. The developer should consider always
immediately specifying the types as the correct types instead of
using the generic “address” type. Although this will not affect gas
usage, it heavily simplifies the codebase and also indicates to third
parties that the developer has a good understanding of solidity best
practice.

pragma solidity >=0.8.0 <0.9.0;

This can be simplified to pragma solidity ^0.8.0 which restricts
the version to 0.8 compatible versions as well.

Recommendation Consider fixing the typographical errors.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 17 71 Global Issues Paladin Blockchain Security

2.2 Adapters/AdapterBase

This is the code for the AdapterBase contract, which is an abstract contract that
defines a basic adapter template. The contract is Ownable, which means that it has
an owner address that can be used to control access to the contract's functions.
The contract is also TimelockCallable, which means that it can be called by a
Timelock contract.

The contract has a constructor function that takes an adapter manager address, a
timelock address, and a name for the adapter as input. The contract also has
functions for pulling tokens from an address, approving tokens, returning assets to
an address, and sweeping assets from an address.

Note that the privileged functions are present in all adapters and will not be
repeated in the following adapter sections.

No significant changes were made since the Avalanche audit. Acknowledged issues
from the previous audit are not listed again (as goes for all contracts within this
audit).

2.2.1 Privileged Functions
• sweep [timelock]

• transferOwnership [owner]

• renounceOwnership [owner]

• setTimelock [timelock]

Page of 18 71 AdapterBase Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #02 Adapters will not fail if a wrong function is called

Severity

Description AdapterBase is inherited by all adapters and defines an empty
fallback and an empty receive function. This means that any
adapter can receive Ether directly, and if a function is called that
was not defined in the adapter, the transaction would not fail.

For example, if someone calls an Aave function using the 1inch
Adapter, the function will not revert. This issue becomes annoying
when calling multiple adapters at a time because you would not
know which call did nothing.

Additionally, any adapter can receive Ether directly even if they
should not ever receive Ether directly.

Recommendation Consider removing the fallback/receive functions and defining it
only within the adapter that needs them.

Resolution

MEDIUM SEVERITY

The fallback function was removed, but the receive function was
kept.

PARTIALLY RESOLVED

Page of 19 71 AdapterBase Paladin Blockchain Security

2.3 Adapters/OneInchAdapter

OneInchAdapter inherits from the AdapterBase contract and allows for automation
to use 1inch to swap for a wallet.

The contract also defines a public constant for the oneInchRouter which is hard-
coded to be the address 0x1111111254fb6c44bAC0beD2854e76F90643097d.

Finally, the contract defines a function called swap which can be called via
delegation in order to perform a swap of tokens using the OneInchRouter contract.
The function takes two arguments (a bytes memory callArgs, and a uint256
amountETH), and blindly uses these to call the OneInchRouter contract, requiring
said call to succeed. Any function can therefore be called on the router.

OneInchAdapter is a delegatecall adapter.

2.3.1 Issues & Recommendations

No issues found.

Page of 20 71 OneInchAdapter Paladin Blockchain Security

2.4 Adapters/WethGateway

WethGateway is a simple adapter that allows for the depositing and withdrawal of
WETH from and into ETH.

It should be noted that withdrawing WETH straight into a proxy is generally
discouraged due to the fallback logic of a proxy costing potentially too much gas for
the gas-limited transfer to succeed. However, as the wallet proxy presently has a
receive() override, this should not cause a problem for now. Generally and
informationally speaking, a non-upgradeable helper contract is used to withdraw
WETH instead of the approach which is taken here.

WethGateway is a delegationcall adapter.

2.4.1 Issues & Recommendations

No issues found.

Page of 21 71 WethGateway Paladin Blockchain Security

2.5 Adapters/AaveAdapter

AaveAdapter allows users to deposit and withdraw tokens from the Aave lending
pool. The contract also allows users to borrow and repay tokens. The contract
includes a flash loan function that allows users to borrow tokens from the Balancer
Vault and repay them using the Aave lending pool. Finally, the contract allows users
to claim rewards from the Aave Incentives Controller.

The deposit and positionTransfer functions are meant to be called by the
AdapterManger.

All the other functions should be called by a delegatecall from the user’s
ProxyWallet.

2.5.1 Privileged Functions
• initialize [timelock]

Page of 22 71 AaveAdapter Paladin Blockchain Security

2.5.2 Issues & Recommendations

Issue #03 The exchangeDebt function could be delegatecalled directly by any
contract

Severity

Description The exchangeDebt function does not check that the call was
initiated by the positionTransfer function. This could incur losses
to an account if that function were delegatecalled directly.

Recommendation Consider checking that
IAaveAdapter(ADAPTER_ADDRESS).executor() != address(0) to
make sure the call was initiated by the positionTransfer function.

Resolution

MEDIUM SEVERITY

RESOLVED

Issue #04 The positionTransfer function does not allow the transfer of
stable rate borrowings

Severity

Description The positionTransfer function only considers variable rate
borrowings. This function will fail if the user borrows with a stable
rate market.

Recommendation Consider also transferring stable rate borrowings by checking the
user’s balance of the stableDebtToken and using rateMode = 1 to
borrow and repay to transfer the user’s position if this behavior was
not expected.

Resolution
As rateMode = 1 is not widely adopted, Cian prefers not to add
cases that are virtually unused.

ACKNOWLEDGED

MEDIUM SEVERITY

Page of 23 71 AaveAdapter Paladin Blockchain Security

Issue #05 The positionTransfer function does not refund enough tokens at
the end of the flashloan

Severity

Location L281

_tokens[i].safeTransfer(address(flashLoanVault),

_amounts[i]);

Description Currently, Aave has no flashloan fee but it could change in the
future. If that happens, the function will revert as the amount
transferred back does not consider the fee.

Recommendation Consider refunding amount + fee at the end of the flashloan if this is
not expected.

Additionally, the balance check at line 278 should then be moved
into the executeFlashLoan function surrounding the flashLoan call
at line 253.

One could argue that this function should not be used if there was a
flashloan fee. If that is the case, consider clarifying by adding
comments.

Resolution

MEDIUM SEVERITY

The balance check was moved accordingly. Additionally, if the
flashloan had fees, it would not be able to call this function and
CIAN’s front end will not display this function.

RESOLVED

Page of 24 71 AaveAdapter Paladin Blockchain Security

Issue #06 The reentrancy check during flashloan is null and void

Severity

Location L263

require(executor != address(0), "Reentrant call!");

Description Contrary to what is stated, the reentrant check does not prevent
any reentrancy. However, this check is essential as it ensures the
flashloan was initiated by the positionTransfer function.

The function also expects that all arrays are of length 1, which could
be incorrect during a reentrant call.

Recommendation Consider adding a reentrancy check and add a safety check that all
arrays are of length 1.

Additionally, consider removing the for loop at lines 280-282 as the
lengths are expected and should be of length 1 everywhere else in
the function.

Resolution

MEDIUM SEVERITY

RESOLVED

Issue #07 Ether can get stuck in the contract during a deposit

Severity

Description The deposit function does not check that msg.value is 0 when
adding a token other than Ether. A deposit with bad parameters
could lock Ether in that contract.

Recommendation Consider checking that msg.value is 0 during a deposit of a token
other than Ether.

Resolution

LOW SEVERITY

RESOLVED

Page of 25 71 AaveAdapter Paladin Blockchain Security

Issue #08 The initialize function could be used to add malicious bad
contracts

Severity

Description The initialize function only checks that the underlying asset
matches the tokens provided. A contract that was not added to
Aave could be added as long as this check passes.

Recommendation Consider asserting that the token was added to Aave. One way
could be to query the getReserveTokenAddresses function from
the AaveProtocolDataProvider contract with each tokenAddr and
assert that the aToken provided and returned are the same and non-
zero. This will ensure that the contract has been added to Aave.

Resolution

LOW SEVERITY

RESOLVED

Issue #09 The positionTransfer function can only be called using the
multicall function

Severity

Description positionTransfer needs a callback in order to work properly. As
the executeOnAdapter function does not allow the user to set if a
callback is required, this specific function will revert.

Recommendation Consider fixing this issue if this behavior is not expected and is
causing issues.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 26 71 AaveAdapter Paladin Blockchain Security

Issue #10 Unused imports and variables

Severity

Description Imports and variables defined in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

L6-8

import "../../../interfaces/aave/v2/

IProtocolDataProvider.sol";

import "../../../interfaces/aave/v2/

IIncentivesController.sol";

import "../../../interfaces/aave/v2/ILendingPool.sol";

L12

import "../../../interfaces/aave/v2/IOracle.sol";

L73-74

address public constant stethTokenAddr =

0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84;

L76-77

address public constant aaveProviderAddr =

0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5;

L85-86

address public constant aaveOracleAddr =

0xA50ba011c48153De246E5192C8f9258A2ba79Ca9;

Recommendation Consider removing the unused imports and variables to keep the
contract short and simple.

Resolution

INFORMATIONAL

PARTIALLY RESOLVED

Page of 27 71 AaveAdapter Paladin Blockchain Security

Issue #11 Typographical errors

Severity

Location L213-216

function getReward(

 address[] memory assertAddress,

 uint256 amount

) external onlyDelegation

Description getReward should be renamed to claimRewards as it claims rewards
and is not a getter.

Additionally, assertAddress should be renamed as assetAddress.

Recommendation Consider fixing the typographical errors.

Resolution

INFORMATIONAL

RESOLVED

Issue #12 positionTransfer could run out of gas

Severity

Description positionTransfer iterates over all the Aave’s markets to transfer
the user’s position to its smart account. This loop could run out of
gas if too many markets were to be added.

Recommendation Consider redesigning the functionality mentioned above if this
behavior is not expected.

Resolution

INFORMATIONAL

If the function ever runs out of gas, it would be turned off in the
interface.

ACKNOWLEDGED

Page of 28 71 AaveAdapter Paladin Blockchain Security

2.6 Adapters/CurvesteCRVAdapter

CurvesteCRVAdapter allows CIAN users to interact with the curve protocol. They
can exchange stEth to Eth, add stEth and Eth liquidity, remove stEth and Eth
liquidity with the options to either receive both tokens back or to accumulate just
one of both.

Additionally, the adapter allows CIAN users to deposit, withdraw, and
claimRewards from CurveLiquidityGaugev2.

The exchange, addLiquidity, removeLiquidity and removeLiquidityOneCoin
functions are meant to be called by the AdapterManager.

The deposit, withdraw and claimRewards functions are meant to be
delegatecalled by the user’s ProxyWallet.

Page of 29 71 CurvesteCRVAdapter Paladin Blockchain Security

2.6.1 Issues & Recommendations

Issue #13 Unused imports and variables

Severity

Description Imports and variables defined in a contract but not used within said
contract could confuse third-party auditors. They also increase the
contract length unnecessarily.

L9

import "../../interfaces/curve/ICurveLpToken.sol";

L27-28

address public constant crvAddr =

0xD533a949740bb3306d119CC777fa900bA034cd52;

Recommendation Consider removing the unused variables and imports.

Resolution RESOLVED

INFORMATIONAL

Issue #14 Lack of events for all functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

Recommendation Add events for all functions in the contract.

Resolution

INFORMATIONAL

RESOLVED

Page of 30 71 CurvesteCRVAdapter Paladin Blockchain Security

2.7 Adapters/FeeBoxETH

FeeBoxETH is responsible for taking fees from users' wallets to subsidize gas and
management costs for the operators that execute automation jobs for them.

All functions are meant to be called by the AdapterManager.

2.7.1 Privileged Functions
• initialize [timelock]

• setAdapterManager [timelock]

• paymentCheck [balanceController]

• setBalance [balanceController]

Page of 31 71 FeeBoxETH Paladin Blockchain Security

2.7.2 Issues & Recommendations

Issue #15 Typographical errors

Severity

Location L77

mapping(address => uint256) public wethBlance;

Description wethBlance should be renamed to wethBalance.

Additionally, as the contract stores ETHER and not wrapped
ETHER, the variable should be renamed to ethBalance.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 32 71 FeeBoxETH Paladin Blockchain Security

Issue #16 Gas optimizations

Severity

Description We have consolidated the sections which can be further optimized
for gas usage below.

L136 - 145

require(

 wethBlance[account] + amount + msg.value >=

consumedAmount,

 "Insolvent!"

);

wethBlance[account] =

 wethBlance[account] +

 amount +

 msg.value -

 consumedAmount;

wethBalance can be cached to save some gas. It also does not make
much sense to deposit if the consumed amount is greater than the
amount + msg.value as it would only decrease the user’s balance.
Consider checking that amount + msg.value > consumedAmount
instead. This check will also prevent user from depositing 0 ether.

L180 - 181

require(wethBlance[account] >= consumedAmount + amount,

"Insolvent!");

wethBlance[account] = wethBlance[account] - amount -

consumedAmount;

wethBalance can be cached to save some gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 33 71 FeeBoxETH Paladin Blockchain Security

2.8 Adapters/FeeBoxStETH

FeeBoxStETH is responsible for taking fees from users' wallets to subsidize gas and
management costs for the operators that execute automation jobs for them.

All functions are meant to be called by the AdapterManager.

2.8.1 Privileged Functions
• initialize [timelock]

• setAdapterManager [timelock]

• paymentCheck [balanceController]

• setBalance [balanceController]

Page of 34 71 FeeBoxStETH Paladin Blockchain Security

2.8.2 Issues & Recommendations

Issue #17 Fees are incorrectly transferred back to the user

Severity

Location L110 - 116

function _paymentCheck(address account, uint256

consumedAmount) internal {

 if (consumedAmount != 0) {

 require(tokenBlance[account] >= consumedAmount,

"Insolvent!");

 tokenBlance[account] -= consumedAmount;

 IERC20(stETH).safeTransfer(account, consumedAmount);

 }

}

Description consumedAmount should be transferred to the feeReceiver and not
back to the account.

Recommendation Consider transferring consumedAmount to the feeReceiver.

Resolution RESOLVED

MEDIUM SEVERITY

Issue #18 Typographical error

Severity

Description L77

mapping(address => uint256) public tokenBlance;

tokenBlance should be renamed as tokenBalance.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

RESOLVED

Page of 35 71 FeeBoxStETH Paladin Blockchain Security

Issue #19 Lack of proper message during edge cases

Severity

Description Deposits can fail without a proper message if consumedAmount is
greater than the user’s balance.

Withdrawals can fail without a proper message as well if the user’s
balance is greater than amount, but lower than amount +
consumedAmount.

Recommendation Consider reverting with a proper message.

For deposits, check that the consumedAmount is greater than the
deposited amount.

For withdrawals, check that the user’s balance is greater than the
consumed and withdrawn amounts.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 36 71 FeeBoxStETH Paladin Blockchain Security

2.9 Adapters/VerifierBasic

VerifierBasic is used by the various FeeBoxes to validate signatures.

Page of 37 71 VerifierBasic Paladin Blockchain Security

2.9.1 Issues & Recommendations

Issue #20 The verifierBasic contract is potentially vulnerable

Severity

Description The ecrecover EVM opcode allows for malleable (non-unique)
signatures. The ecrecover EVM opcode can also return a random
address for wrong signatures (though this happens with any
signature library), and it will return address(0) on wrong
signatures.

Those edge cases are not checked and enforced to ensure the
safety of those signatures.

This issue specifically poses a threat if the signer is ever set to
address zero, as at this point anyone can submit seemingly valid
signatures with nonsense data.

Recommendation Consider removing this contract entirely and use OpenZeppelin’s
ECDSA directly in the Verifier contract instead.

The signatures should follow the EIP-712 standard to allow users to
know exactly what they are signing,

Resolution

MEDIUM SEVERITY

The contract now uses OpenZeppelin’s ECDSA.

RESOLVED

Page of 38 71 VerifierBasic Paladin Blockchain Security

2.10 Adapters/LidoAdapter

LidoAdapter allows CIAN users to interact with the Lido protocol. Users can call
submit and submitWeth which transfers either ether or wEther from the user to the
Lido protocol and then mints stEth to the user. Users can also wrap and unwrap
their stEth tokens.

LidoAdapter is a delegatecall adapter.

2.10.1 Privileged Functions
• initialize [timelock]

Page of 39 71 LidoAdapter Paladin Blockchain Security

2.10.2 Issues & Recommendations

Issue #21 referral is only set within the logic contract

Severity

Description Currently, referral is set within the initialize function. However,
since it is used in various functions which are called by a
delegatecall, the proxy contract will try to find the referral
variable in its own storage, and it will probably take the variable
from its storage place 0.

This of course does not work and could cause seriously unintended
results as unexpected storage is returned instead.

Recommendation Consider using constant or immutable for the referral variable.

Resolution
referral is now always address(0).

RESOLVED

MEDIUM SEVERITY

Page of 40 71 LidoAdapter Paladin Blockchain Security

2.11 Adapters/ParaswapAdapter

ParaswapAdapter is an adapter that allows the user to use the Paraswap protocol.
It simply allows the user to swap tokens. It uses a simple call pattern to call any
function on the Paraswap contract just like the 1inch adapter.

ParaswapAdapter is a delegatecall adapter.

2.11.1 Issues & Recommendations

No issues found.

Page of 41 71 ParaswapAdapter Paladin Blockchain Security

2.12 Adapters/AdapterManager

AdapterManager is the main registry for all Cian adapters. An adapter is a smart
contract that Cian operators can use to execute functionality for users on their
wallets.

The manager can also be paused by various Cian approved pause guardians. This
prevents operators from executing calls on user wallets and can be used as an
emergency safeguard if an adapter has a vulnerability.

2.12.1 Privileged Functions
• execute [user proxies]

• registerAdapters [timelock]

• unregisterAdapters [timelock]

• setPauseWhiteList [timelock]

• setPause [suspend permissioned accounts & owner can pause, timelock can

unpause]

2.12.2 Issues & Recommendations

No issues found.

Page of 42 71 AdapterManager Paladin Blockchain Security

2.13 Core/AccountManager

AccountManager is a helper contract that is deployed for each user that aims to
increase the comfort when handling an arbitrary amount of Accounts. The owner of
this contract can add various Accounts to the AccountManager and grant arbitrary
addresses privileged rights to execute the following functions for a userAccount
(IAccount) on the previously added Accounts:

- createSubAccount

- executeOnAdapter

- executeMulticall

- setAdvancedOption

- callOnSubAccount

- withdrawAssets

- approveTokens

It also allows privileged addresses to call approve on the ERC2612Verifier as well
on the tokenApprovalVerifier contract.

As mentioned above, the owner of this contract has the privilege to add and delete
accounts via addAccounts and delAccounts. Before any accounts can be added,
the ownership of this account must be transferred to the AccountManager.

The most privileged function is the setAuthorization function which allows the
owner to set any address as executor for specific operations for any account within
a certain deadline.

Page of 43 71 AccountManager Paladin Blockchain Security

These are the following operations that can be assigned to the executor:

- CREATE_SUBACCOUNT

- EXECUTE_ON_ADAPTER

- MULTICALL

- SET_ADVANCED_OPTION

- CALL_ON_SUBACCOUNT

- WITHDRAW_ASSETS

- APPROVE_TOKENS

- APPROVE_ERC2612_VERIFIER

- APPROVE_TOKEN_VERIFIER

If an address was set as executor for an account with the correct operation, it can
execute the function which was assigned to the operation arbitrarily often within the
determined deadline.

The owner can also freely define the ERC2612Verifier and the
TokenApprovalVerified as well as change the minDelay and maxDelay which is
used for granting the authorization.

2.13.1 Privileged Functions
• transferOwnership

• renounceOwnership

• setDelay

• setVerifier

• addAccounts

• delAccounts

• setAuthorization

Page of 44 71 AccountManager Paladin Blockchain Security

2.13.2 Issues & Recommendations

Issue #22 Authorized addresses are difficult to query

Severity

Description An account could forget which address they authorized. They would
need to query events to get them, which is complicated, and not all
users may be able to do that.

Recommendation Consider adding the authorized address to a set so the user can
query which address was authorized for which accounts more
easily.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #23 accountNum is a duplicate of the length function

Severity

Description accountNum will always be equal to the length of account that is
returned by the getAccountsLength function.

Recommendation Consider removing the accountNum variables to save some gas, as
the getAccountsLength function already returns this information.

Resolution

INFORMATIONAL

RESOLVED

Page of 45 71 AccountManager Paladin Blockchain Security

Issue #24 The constructor does not emit the expected events

Severity

Description The constructor sets sensitive variables and should emit the same
event as the setters.

Recommendation Consider emitting events even inside the constructor.

Resolution

INFORMATIONAL

RESOLVED

Issue #25 Lack of validation

Severity

Description The contract lacks validation for multiple functions. We have
consolidated them below.

Within setVerifier, there is no validation that _erc2612Verifier
and _tokenApprovalVerifier is not address(0).

Within setAuthorization, there is no validation for
_authorization. If this is desired to be able to revoke operations,
we recommend adding a default operation for revoking purposes.

setAuthorization does not check that the approved operations
exist. This could be done by asserting that _authorization < (1
<< (max(enum) + 1). Additionally, it would be cleaner to assert
that the _authorization is non-zero and use a dedicated function
to revoke authorizations.

Recommendation Consider validating the above functions properly.

Resolution RESOLVED

INFORMATIONAL

Page of 46 71 AccountManager Paladin Blockchain Security

Issue #26 Unused import

Severity

Description Imports defined in a contract but not used within said contract
could confuse third-party auditors. They also increase the contract
length unnecessarily.

L7

import "@openzeppelin/contracts-upgradeable/access/

OwnableUpgradeable.sol";

The contract does already import Ownable, so there is no need to
also import the upgradeable version.

Recommendation Consider removing the unused import.

Resolution RESOLVED

INFORMATIONAL

Page of 47 71 AccountManager Paladin Blockchain Security

Issue #27 Typographical errors

Severity

Description We have consolidated the typographical errors into a single issue to
keep the report brief and readable.

L6

uint256 public constant MINIMUM_DELAY = 1 days;

This should be named MINIMUM_DEADLINE.

L7

uint256 public constant MAXIMUM_DELAY = 365 days;

This should be named MAXIMUM_DEADLINE.

L119
OwnableUpgradeable(_accounts[i]).owner() == address(this),

Since we recommended removing the OwnableUpgradeable import,
this should be casted to either Ownable or IAccount.

Recommendation Consider fixing the above errors.

Resolution RESOLVED

INFORMATIONAL

Page of 48 71 AccountManager Paladin Blockchain Security

2.14 Core/Automation

Automation contract is the core authorization contract used by all
wallets. Operators must go through the Automation contract if they wish to execute
automation tasks on a user wallet. Automation will then call the ERC2612Verifier
to check if the operator has permission to execute the specific action for the user.

TokenApprovalVerifier will be queried if the action deals with tokens.

The user can also set a LoanProvider that will be used for flashloans, and if none
are defined, the default one will be used.

2.14.1 Privileged Functions
• setLoanProvider [only account owner]

• autoExecute [only approved adapters]

• autoExecuteMultiCall [only approved adapters]

• autoApprove [only if 0 was approved and spender needs to have been

approved]

• autoApproveWithPermit [only if 0 was approved and owner has signed a

message to permit]

• doFlashLoan [only if 1 was approved]

• autoExecuteOnSubAccount [only if 2 was approved]

• doFlashLoanOnSubAccount [only if 3 was approved]

Page of 49 71 Automation Paladin Blockchain Security

2.14.2 Issues & Recommendations

No issues found.

Page of 50 71 Automation Paladin Blockchain Security

2.15 Core/AutomationCallable

AutomationCallable is a contract that needs to be inherited to allow the contract
to set an autoExecutor which allows it to execute tasks on the contract.

2.15.1 Issues & Recommendations

No issues found.

Page of 51 71 AutomationCallable Paladin Blockchain Security

2.16 Core/ControllerLib

ControllerLib represents the core contract of CIAN architecture — it is the
implementation of the user’s ProxyWallet, which is their virtual wallet.
ControllerLib, therefore, contains all core logic for the user and other system
components to manage the user's virtual wallet.

It allows the user to force their virtual wallet to execute arbitrary logic through
either calls or delegatecalls. It also allows the user to approve various controllers to
execute logic on adapters for them. These controllers do this by calling the
CallProxy (called the “automation” in this contract) which is also described within
this audit. The CallProxy then validates the request and forwards it to the user's
virtual wallet.

2.16.1 Privileged Functions
• createSubAccount [owner]

• executeOnAdapter [automation / owner]

• multiCall [automation / owner]

• callDirectly [owner]

• callOnSubAccount [automation / owner]

• setAdvancedOption [owner]

• withdrawAssets [owner]

• approve [automation / owner]

• approveTokens [automation / owner]

• transferOwnership [owner]

• renounceOwnership [owner]

• reinitialize [owner]

Page of 52 71 ControllerLib Paladin Blockchain Security

2.16.2 Issues & Recommendations

Issue #28 The multicall function might fail or send too much Ether

Severity

Location L167 - 169

returnData = IAdapterManager(adapterManager).execute{

 value: costETH + msg.value

}(_callBytes);

Description During a call to the multicall function, msg.value will be the
forwarder each time, meaning that it will try to send msg.value over
and over. This will either send too much Ether, or revert because of
the insufficient balance.

Recommendation Consider redesigning those functions to avoid this issue. One way
could be to send a number of Ether that was given as a parameter
while verifying that msg.value and the parameter are set
accordingly.

Resolution

MEDIUM SEVERITY

multicall is no longer payable. It should be noted that this fix
comes at the cost of not being able to send Ether to any function or
adapter during a multicall.

RESOLVED

Page of 53 71 ControllerLib Paladin Blockchain Security

Issue #29 Privilege escalation: The approve functions allow the bypassing of
the advancedTradingEnable boolean

Severity

Location L299 - 339

function withdrawAssets(

 address[] memory _tokens,

 address _receiver,

 uint256[] memory _amounts

) external onlyOwner {

 if (_receiver != owner() && !isSubAccount[_receiver]) {

 require(advancedOptionEnable, "Not allowed!");

 }

 _transferAssets(_tokens, _amounts, _receiver);

 emit WithdrawAssets(_tokens, _receiver, _amounts);

}

function approve(

 IERC20 _token,

 address _spender,

 uint256 _amount

) external onlyAutomationOrOwner {

 _token.safeApprove(_spender, 0);

 _token.safeApprove(_spender, _amount);

 emit ApproveToken(_token, _spender, _amount);

}

MEDIUM SEVERITY

Page of 54 71 ControllerLib Paladin Blockchain Security

function approveTokens(

 IERC20[] memory _tokens,

 address[] memory _spenders,

 uint256[] memory _amounts

) external onlyAutomationOrOwner {

 require(

 _tokens.length == _amounts.length &&

 _spenders.length == _amounts.length,

 "approve length error."

);

 for (uint256 i = 0; i < _tokens.length; i++) {

 _tokens[i].safeApprove(_spenders[i], 0);

 _tokens[i].safeApprove(_spenders[i], _amounts[i]);

 }

 emit ApproveTokens(_tokens, _spenders, _amounts);

}

Description In order to withdraw tokens to an external address, the owner
needs to allow the advancedOptionEnable. A privilege escalation
can occur by approving an external address as the spender. This
spender can then call transferFrom to withdraw the tokens.

This can be done by the owner or the automation.

Recommendation Consider whether this is an issue. If so, consider preventing these
functions from being called when that bool is set to false

Resolution
The Cian team does not consider this to be an issue since the
advanced mode is to let users execute arbitrary operation rather
than withdrawing funds.

ACKNOWLEDGED

Page of 55 71 ControllerLib Paladin Blockchain Security

Issue #30 Typographical error

Severity

Location L124 - 128

require(

 // autoExecutor or owner

 autoExecutor == msg.sender || owner() == msg.sender,

 "Permit: caller is not the Permit"

);

Description The error message seems outdated.

Recommendation Consider fixing the typographical error.

Resolution

INFORMATIONAL

RESOLVED

Page of 56 71 ControllerLib Paladin Blockchain Security

2.17 Core/ControllerLibSub

ControllerLibSub represents a sub-wallet of the main ControllerLib wallet with
less strict permission controls. The main wallet has full authorization over this sub
wallet as well as the main wallet owner.

Most of the issues from ControllerLib are present here as well.

2.17.1 Privileged Functions
• reinitialize [eoa owner]

• withdrawAssets [eoa owner]

• approveTokens [eoa owner]

• executeOnAdapter [owner: parent wallet]

• multiCall [owner: parent wallet]

Page of 57 71 ControllerLibSub Paladin Blockchain Security

2.17.2 Issues & Recommendations

Issue #31 implementationAddress must be made immutable for the value to
be set correctly on the proxy

Severity

Description implementationAddress is the zero address on the proxy. The value
should be made immutable.

Recommendation Consider making the variable immutable.

Resolution

INFORMATIONAL

RESOLVED

Page of 58 71 ControllerLibSub Paladin Blockchain Security

2.18 Core/ControllerLink

ControllerLink is a helper contract that will behave like a user database. Every
time a new ProxyWallet is created, it is added to the ControllerLink mappings.

2.18.1 Privileged Functions
• addAuth [factory]

• removeAuth [owner]

• transferOwnership [owner]

• renounceOwnership [owner]

2.18.1 Privileged Functions

No issues found.

Page of 59 71 ControllerLibSub Paladin Blockchain Security

2.19 Core/BalancerERC3156

BalancerERC3156 is a simple user interface for executing flashloans. The user can
request a flashloan from the vault with an arbitrary borrower address as receiver.

The vault will then send the tokens to the contract and these tokens will then be
sent to the borrower to execute its logic with the tokens.

After the logic is executed, BalancerERC3156 will take the tokens + fee from the
borrower and send it back to the vault.

Page of 60 71 BalancerERC3156 Paladin Blockchain Security

2.19.1 Issues & Recommendations

Issue #32 maxFlashLoan returns a wrong value

Severity

Description Currently, the maxFlashLoan returns uint256(max); however, the
function name indicates that the goal for this function is to return
the maximum flashloan amount.

Recommendation Consider removing this function or adding logic that returns the
maximum possible amount of a flashloan for a specific token, i.e.
the token’s balance of the vault.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Issue #33 The reentrancy check is flawed

Severity

Location L70

require(executor != address(0), "reEntrance");

Description This requirement is not a reentrancy check, but it ensures that the
flashloan was initiated by this contract with the flashLoan function.
A reentrancy could in theory still be made, though we are sure the
balancer implementation protects against this.

Recommendation Consider reverting with a more accurate message.

Also, if a reentrancy check was needed, there can be a check that
executor is address(0) at line 50.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 61 71 BalancerERC3156 Paladin Blockchain Security

Issue #34 vault can be made constant

Severity

Description Variables that are never modified can be indicated as such with the
constant keyword. This is considered best practice since it makes
the code more accessible for third-party reviewers and saves gas.

Recommendation Consider making the variable explicitly constant.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 62 71 BalancerERC3156 Paladin Blockchain Security

2.20 Core/ERC2612Verifier

ERC2612Verifier allows users to specify if they approve basic operations and/or
specific adapters. Those approvals are represented using ids. If a user wants to
allow a specific id, they need to call approve with 2^id as the approvalType.

In addition, an user can sign a message to approve an adapter without ever calling
the function themselves.

Currently the basic operations are:

- (2^0): approve a token.

- (2^1): allow flashloans on BankerJoe.

The id of the different adapters will be chosen by the team.

Note that any approval will overwrite all previous approvals. This means that the
user must be extremely careful with their transaction bytes, as it will be
exceptionally difficult to figure out which adapter they are approving.

2.20.1 Privileged Functions
• approve [only owner of that account]

• revoke [only owner of that account]

2.20.1 Issues & Recommendations

No issues found.

Page of 63 71 ERC2612Verifier Paladin Blockchain Security

2.21 Core/TokenApprovalVerifier

TokenApprovalVerifier allows users to approve different addresses to use the
tokens that are in their proxies. They can also sign a message that can be used to
approve on behalf of the user.

2.21.1 Privileged Functions
• approve [proxies owner]

2.21.2 Issues & Recommendations

No issues found.

Page of 64 71 TokenApprovalVerifier Paladin Blockchain Security

2.22 Timelock

Timelock is a clean fork of Compound Finance’s timelock. This is the most common
contract used in DeFi to time lock governance access and is thus compatible with
most third-party tools.

Timelock allows an administrator to set a delay before transactions are executed,
which must be between 12 hours and 30 days. This prevents the administrator from
executing transactions without first announcing them beforehand. Transactions can
be queued by the administrator, and they will be executed after the delay has
passed. If a transaction is not executed within the grace period, it is considered
stale and will not be executed. This ensures that only transactions which have been
properly announced and queued will be executed, preventing the administrator
from executing unauthorized or malicious transactions.

The admin is the account which has been designated as the owner of the Timelock
contract.

Page of 65 71 Timelock Paladin Blockchain Security

2.22.1 Privileged Functions
• setDelay [timelock itself]

• setPendingAdmin [timelock itself]

• acceptAdmin [new owner]

• queueTransaction [owner]

• cancelTransaction [owner]

• executeTransaction [owner]

Parameter Value Description

Delay 12 hours The delay indicates the time the administrator has to wait after
queuing a transaction to execute it.

Minimum
Delay

12 hours The minDelay indicates the lowest value that the delay can
minimally be set.

Sometimes, projects will queue a transaction that sets the
delay to zero with the hope that nobody notices it. However,
because of the minimum delay parameter, the value of delay
can never be lower than that of the minDelay value. Note that
the administrator could still queue a transaction to simply
transfer the ownership back to their own account so it is still
important to inspect every transaction carefully.

Grace Period 14 days After the delay has expired after queueing a transaction, the
administrator can only execute it within the grace period. This
is to prevent them from hiding a malicious transaction among
much earlier transactions, hoping that it goes unnoticed or
buried, which can be executed in the future.

Page of 66 71 Timelock Paladin Blockchain Security

2.22.2 Issues & Recommendations

No issues found.

Page of 67 71 Timelock Paladin Blockchain Security

2.23 TimelockCallable

TimelockCallable is an abstract contract that is meant to be inherited by various
contracts. It contains logic that allows certain functions to get only executed by the
Timelock.

The timelock can be changed by the timelock by calling the setTimelock function.

2.23.1 Privileged Functions
• setTimelock (onlyTimelock)

2.23.2 Issues & Recommendations

No issues found.

Page of 68 71 Timelock Paladin Blockchain Security

2.24 AddressArrayLib

AddressArrayLib is a utility library that can be used to add, remove, or fill values in
an address array. The library includes functions to add an item to an array, add an
item to an array only if it is not already in the array, verify if an array contains a
particular value, reassign all items in an array with a specified value, verify if array is
a set of unique values, and remove items from an array.

The gas cost of the contains function alongside many of the other functions
increases linearly and sometimes quadratically with the size of the array, since they
have to loop through the entire array to check if the target value is present.

Page of 69 71 AddressArrayLib Paladin Blockchain Security

2.24.1 Issues & Recommendations

Issue #35 AddressArrayLib is unused

Severity

Description The contract is unused even though it is imported.

Recommendation Consider removing it to make the code base more readable.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 70 71 AddressArrayLib Paladin Blockchain Security

Page of 71 71 AddressArrayLib Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 AdapterBase
	1.3.3 OneInchAdapter
	1.3.4 WethGateway
	1.3.5 AaveAdapter
	1.3.6 CurvesteCRVAdapter
	1.3.7 FeeBoxETH
	1.3.8 FeeBoxStETH
	1.3.9 VerifierBasic
	1.3.10 LidoAdapter
	1.3.11 ParaswapAdapter
	1.3.12 AdapterManager
	1.3.13 AccountManager
	1.3.14 Automation
	1.3.15 AutomationCallable
	1.3.16 ControllerLib
	1.3.17 ControllerLibSub
	1.3.18 ControllerLink
	1.3.19 BalancerERC3156
	1.3.20 ERC2612Verifier
	1.3.21 TokenApprovalVerifier
	1.3.22 Timelock
	1.3.23 TimelockCallable
	1.3.24 AddressArrayLib

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 Adapters/AdapterBase
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Adapters/OneInchAdapter
	2.3.1 Issues & Recommendations

	2.4 Adapters/WethGateway
	2.4.1 Issues & Recommendations

	2.5 Adapters/AaveAdapter
	2.5.1 Privileged Functions
	2.5.2 Issues & Recommendations

	2.6 Adapters/CurvesteCRVAdapter
	2.6.1 Issues & Recommendations

	2.7 Adapters/FeeBoxETH
	2.7.1 Privileged Functions
	2.7.2 Issues & Recommendations

	2.8 Adapters/FeeBoxStETH
	2.8.1 Privileged Functions
	2.8.2 Issues & Recommendations

	2.9 Adapters/VerifierBasic
	2.9.1 Issues & Recommendations

	2.10 Adapters/LidoAdapter
	2.10.1 Privileged Functions
	2.10.2 Issues & Recommendations

	2.11 Adapters/ParaswapAdapter
	2.11.1 Issues & Recommendations

	2.12 Adapters/AdapterManager
	2.12.1 Privileged Functions
	2.12.2 Issues & Recommendations

	2.13 Core/AccountManager
	2.13.1 Privileged Functions
	2.13.2 Issues & Recommendations

	2.14 Core/Automation
	2.14.1 Privileged Functions
	2.14.2 Issues & Recommendations

	2.15 Core/AutomationCallable
	2.15.1 Issues & Recommendations

	2.16 Core/ControllerLib
	2.16.1 Privileged Functions
	2.16.2 Issues & Recommendations

	2.17 Core/ControllerLibSub
	2.17.1 Privileged Functions
	2.17.2 Issues & Recommendations

	2.18 Core/ControllerLink
	2.18.1 Privileged Functions
	2.18.1 Privileged Functions

	2.19 Core/BalancerERC3156
	2.19.1 Issues & Recommendations

	2.20 Core/ERC2612Verifier
	2.20.1 Privileged Functions
	2.20.1 Issues & Recommendations

	2.21 Core/TokenApprovalVerifier
	2.21.1 Privileged Functions
	2.21.2 Issues & Recommendations

	2.22 Timelock
	2.22.1 Privileged Functions
	2.22.2 Issues & Recommendations

	2.23 TimelockCallable
	2.23.1 Privileged Functions
	2.23.2 Issues & Recommendations

	2.24 AddressArrayLib
	2.24.1 Issues & Recommendations

